Chapter 3

Contents
- Overview, 116
 - 3-1 Linear Circuits, 116
- 3-2 Node-Voltage Method, 117
- 3-3 Mesh-Current Method, 123
- 3-4 By-Inspection Methods, 129
- 3-5 Linear Circuits and Source Superposition, 133
- 3-6 Thévenin and Norton Equivalent Circuits, 140
- 3-8 Maximum Power Transfer, 151

Summary, 164
Problems, 165

Objectives
Learn to:
- Apply the node-voltage and mesh-current methods to analyze an electric circuit of any configuration, so long as it is linear and planar.
- Apply the by-inspection methods to circuits that satisfy certain conditions.
- Use the source-superposition method to evaluate the sensitivity of a circuit to the various sources in the circuit.

The basic laws of Chapter 2 are used in the present chapter to develop standard solution methods that can be applied to analyze any linear circuit, no matter how complex.

- Determine the Thévenin and Norton equivalent circuits of any input circuit and use them to evaluate the response of an external load (or an output circuit) to the input circuit.
- Establish the conditions for maximum transfer of current, voltage, and power from an input circuit to an external load.
- Learn the basic properties of the bipolar junction transistor.
Thévenin’s Theorem

Linear two-terminal circuit can be replaced by an equivalent circuit composed of a voltage source and a series resistor

\[v_{\text{Th}} = v_{\text{oc}} \]

voltage across output with no load (open circuit)

\[R_{\text{Th}} = R_{\text{in}} \]

Resistance at terminals with all independent circuit sources set to zero

(a) Measuring \(v_{\text{oc}} \) on actual circuit

(b) Measuring \(v_{\text{Th}} \) of equivalent circuit
How Do We Find Thévenin/Norton Equivalent Circuits?

Method 1: Open circuit/Short circuit

1. Analyze circuit to find v_{oc}
2. Analyze circuit to find i_{sc}
3. $v_{Th} = v_{oc}$
4. $R_{Th} = \frac{v_{Th}}{i_{sc}}$

Note: This method is applicable to any circuit, whether or not it contains dependent sources.
Example 3-11: Thévenin Equivalent

(a) Original circuit

\[V_L = V - 2I = V \]

\[6 \Omega \quad 2 \Omega \quad 7 \Omega \]

\[24 \text{ V} \]

\[12 \Omega \]

\[V_L = V \]

\[I_L = \frac{V}{R_L} \]

\[b \]

\[b = 0 \]

\[I = 0 \]

\[7 \text{ A} \]

\[K_{be} = V_{Th} \]

\[V_{oc} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]

\[V_{Th} = -12 \text{ V} \]

\[V_{oc} = 12 \text{ V} \]

\[V_c = -12 \text{ V} \]