Diffraction (1)

- A simple example is the image formed by a small circular aperture (Airy disk).
- Note that a point image is formed only if:
 - $\lambda \to 0$, $d \to \infty$, or $f \to 0$

\[R = \frac{1.22\lambda \cdot f}{d} \]

- Diffraction is usually described in terms of two limiting cases:
 - Fresnel diffraction - near field (proximity and contact systems)
 - Fraunhofer diffraction - far field (projection systems)
Resolution

- The denominator is defined as the numerical aperture:
 \[\frac{NA}{n} \sin \alpha \]
 Where \(\alpha \) represents the ability of the lens to collect diffracted light.

- The Resolution is then defined as
 \[R = \frac{0.61 \lambda}{NA} + \frac{k_1 \lambda}{NA} \]
 \(k_1 \) is an experimental parameter which depends on the lithography system and resist properties (\(\approx 0.4 - 0.8 \)).

- Obviously resolution can be increased by:
 - decreasing \(k_1 \)
 - Decreasing \(\lambda \)
 - increasing \(NA \) (bigger lenses)
Depth of Focus

• While resolution can be increased by:
 – decreasing k_1
 – Decreasing λ
 – increasing NA (bigger lenses)

\[
R = \frac{0.61 \lambda}{NA} = k_1 \frac{\lambda}{NA} \tag{4}
\]

• Higher NA lenses also decrease the depth of focus (DOF).
 (See text for derivation.)

\[
DOF = \delta = \pm \frac{\lambda}{2(NA)^2} = \pm k_2 \frac{\lambda}{(NA)^2} \tag{5}
\]

• k_2 is usually experimentally determined.

• Thus a 248nm (KrF) exposure system with a NA = 0.6 would have a resolution of $R \approx 0.3 \mu m$ ($k_1 = 0.75$) and a DOF of $\approx 0.35 \mu m$ ($k_2 = 0.5$).
Proximity lithography.

In proximity lithography, the mask is held above the substrate by a fixed distance or gap. (better protection for mask)

- Limiting factor: Fresnel diffraction
- General rule: resolution $\sim (g \lambda)^{0.5}$ where g is gap.

Derivation: Chang and Sze, ULSI Technology (McGraw Hill, 1996), p 274.

Take $g = 20$ micron and $\lambda = 0.4$ micron: resolution ~ 3 micron.

Since it is difficult to maintain $g < 20$ micron, proximity lithography is rarely used in commercial production. Some versions are widely used in research and small scale production (Suss, 250 nm wavelength).