Problem 3.88 In the circuit of Fig. P3.88, what value of R_s would result in maximum power transfer to the 10-Ω load resistor?

![Figure P3.88: Circuit for Problem 3.88.](image)

Solution: Maximum power transfer to R_L occurs when all of the 2 A flows through R_L, requiring R_s to be ∞.
Problem 3.85 The circuit shown in Fig. P3.85 is connected to a variable load R_L through a resistor R_s. Choose R_s so that I_L never exceeds 4 mA, regardless of the value of R_L. Given that choice, what is the maximum power that R_L can extract from the circuit?

![Circuit Diagram](image)

Solution: We should start by finding the Thévenin equivalent of the circuit to the left of (a,b). Simple source-transformation steps lead to:

![Transformed Circuit Diagram](image)

To satisfy the stated condition, we need to choose R_s such that $I_L = 4$ mA when $R_L = 0$. That is

$$I_L = 4 \text{ mA} = \frac{10}{2k + R_s},$$

which leads to $R_s = 0.5 \text{ k}\Omega$.

For maximum power transfer by R_L, it should be equal to:

$$R_L = 2 \text{ k}\Omega + R_s = 2.5 \text{ k}\Omega$$

$$I_L = \frac{10}{5k} = 2 \text{ mA}$$

$$P_{\text{max}} = I_L^2R_L = (2 \times 10^{-3})^2 \times 2.5 \times 10^3 = 10 \text{ (mW)}.$$
Problem 3.86 In the circuit shown in Fig. P3.86, a potentiometer is connected across the load resistor R_L. The total resistance of the potentiometer is $R = R_1 + R_2 = 5 \, \text{k} \Omega$.

(a) Obtain an expression for the power P_L dissipated in R_L for any value of R_1.

(b) Plot P_L versus R_1 over the full range made possible by the potentiometer’s wiper.

Solution:

(a)

\[
\frac{V - 12}{2k} + \frac{V}{1k} + \frac{V}{R_1} = 0
\]

\[V = \frac{12R_1}{3R_1 + 2}, \quad \text{with } R_1 \text{ measured in } \text{k} \Omega.
\]

\[P_L = \frac{V^2}{R_L} = \frac{V^2}{1k} = \left(\frac{12R_1}{3R_1 + 2}\right)^2 \times 10^{-3}
\]

(b)

P_L (mW) versus R_1 (kΩ) graph