REVIEW OF LECTURES 01-04
Chapter 1 Relationships

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohm’s law</td>
<td>(i = \frac{v}{R})</td>
</tr>
<tr>
<td>Current</td>
<td>(i = \frac{dq}{dt})</td>
</tr>
<tr>
<td>Direction of (i)</td>
<td>direction of flow of (+) charge</td>
</tr>
<tr>
<td>Charge transfer</td>
<td>(q(t) = \int_{-\infty}^{t} i , dt)</td>
</tr>
<tr>
<td>(\Delta Q)</td>
<td>(q(t_2) - q(t_1) = \int_{t_1}^{t_2} i , dt)</td>
</tr>
<tr>
<td>Voltage</td>
<td>potential energy difference</td>
</tr>
<tr>
<td>Passive sign convention</td>
<td>Direction of (i) is into +(v) terminal of device</td>
</tr>
<tr>
<td>Power</td>
<td>(p = vi)</td>
</tr>
</tbody>
</table>

- If \(p > 0 \): device absorbs power
- If \(p < 0 \): device delivers power
Units, Multiples, Notation

Table 1-1: Fundamental SI units.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>Electric Current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>Temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mole</td>
<td>mol</td>
</tr>
</tbody>
</table>

Table 1-2: Multiple and submultiple prefixes.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>exa</td>
<td>E</td>
<td>10^{18}</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>10^{15}</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^{12}</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^{9}</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^{6}</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^{3}</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>micro</td>
<td>μ</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>atto</td>
<td>a</td>
<td>10^{-18}</td>
</tr>
</tbody>
</table>

As a general rule, we shall use:

- A lowercase letter, such as i for current, to represent the general case:

 \[i \] may or may not be time varying

- A lowercase letter followed with (t) to emphasize time:

 \[i(t) \] is a time-varying quantity

- An uppercase letter if the quantity is not time varying; thus:

 \[I \] is of constant value (dc quantity)

- A letter printed in boldface to denote that:

 \[\textbf{I} \] has a specific meaning, such as a vector, a matrix, the phasor counterpart of $i(t)$, or the Laplace or Fourier transform of $i(t)$
Charge & Current

- **Unit of charge** = coulomb \(e = 1.6 \times 10^{-19} \) \(\text{C} \)

1. Charge can be either positive or negative.

2. The fundamental (smallest) quantity of charge is that of a single electron or proton. Its magnitude usually is denoted by the letter \(e \).

3. According to the law of conservation of charge, the (net) charge in a closed region can neither be created nor destroyed.

4. Two like charges repel one another, whereas two charges of opposite polarity attract.

\[
i = \frac{dq}{dt} \quad \text{(A)},
\]
Voltage & Power

The voltage between location \(a \) and location \(b \) is the ratio of \(dw \) to \(dq \), where \(dw \) is the energy in joules (J) required to move (positive) charge \(dq \) from \(b \) to \(a \) (or negative charge from \(a \) to \(b \)).
Power

Rate of expending or absorbing energy

\[P = \frac{dw}{dt} = \frac{dw}{dq} \frac{dq}{dt} = vi \]

\[\sum P = 0 \]

Energy conservation

Units: watts

One watt = power rate of one joule of work per second. 1 W = 1 A x 1 V
Passive Sign Convention

\[p = vi \]

- \(p > 0 \) power delivered to device
- \(p < 0 \) power supplied by device

*Note that \(i \) direction is defined as entering (\(+\)) side of \(v \).
Summary of Chapter 2

Chapter 2 Relationships

Linear resistor
\[R = \frac{\rho \ell}{A} \]
\[p = i^2 R \]

Kirchhoff current law (KCL)
\[\sum_{n=1}^{N} i_n = 0 \]
\[i_n = \text{current entering node } n \]

Kirchhoff voltage law (KVL)
\[\sum_{n=1}^{N} v_n = 0 \]
\[v_n = \text{voltage across branch } n \]

Resistor combinations
In series
\[R_{eq} = \sum_{i=1}^{N} R_i \]

In parallel
\[\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i} \]
\[or \quad G_{eq} = \sum_{i=1}^{N} G_i \]

Voltage division
\[v_1 = \frac{R_1}{R_1 + R_2} v_s \]
\[v_2 = \frac{R_2}{R_1 + R_2} v_s \]

Current division
\[i_1 = \frac{R_2}{R_1 + R_2} i_s \]
\[i_2 = \frac{R_1}{R_1 + R_2} i_s \]

Source transformation
\[v_s \]
\[i_s = \frac{v_s}{R_s} \]

Y–Δ transformation
Table 2-6
Ohm’s Law

Voltage across resistor is proportional to current

\[\nu = iR \]

\[R = \frac{\nu}{i} \]

Resistance: ability to resist flow of electric current

\[R = \frac{\ell}{\sigma A} = \rho \frac{\ell}{A} \quad (\Omega), \]

\[\rho = \text{resistivity} \]
Kirchhoff’s Current Law (KCL)

Sum of currents entering a node is zero
Also holds for closed boundary

\[
\sum_{n=1}^{N} i_n = 0 \quad \text{(KCL)},
\]

\[
i_1 - i_2 - i_3 + i_4 = 0
\]

\[
i_1 + i_4 = i_2 + i_3
\]
Kirchhoff’s Voltage Law (KVL)

Sum of voltages around a closed path is zero
Sum of voltage drops = sum of voltage rises

\[\sum_{n=1}^{N} v_n = 0 \] (KVL),

Sign Convention

- Add up the voltages in a systematic clockwise movement around the loop.
- Assign a positive sign to the voltage across an element if the (+) side of that voltage is encountered first, and assign a negative sign if the (−) side is encountered first.

\[-4 + V_1 - V_2 - 6 + V_3 - V_4 = 0\]
Resistors in Series

Equivalent resistance (series) is sum of resistances

Voltage Divider

\[R_{eq} = \sum_{i=1}^{N} R_i \quad \text{(resistors in series)}, \]

\[v_i = \left(\frac{R_i}{R_{eq}} \right) v_s. \]

Voltage divided over resistors (voltage divider)
Resistors in Parallel

Combining In-Parallel Resistors

\[\begin{align*}
\text{(a) Original circuit} \\
R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} \\
\text{Current Division} \\
R_{eq} = \frac{R_1 R_2}{R_1 + R_2} \\
i_1 = \left(\frac{R_2}{R_1 + R_2} \right) i_s \\
i_2 = \left(\frac{R_1}{R_1 + R_2} \right) i_s \\
i_s = \frac{v_s}{R_1} + \frac{v_s}{R_2} + \frac{v_s}{R_3} \\
\text{(b) Equivalent circuit} \\
\frac{1}{R_{eq}} = \sum_{i=1}^{N} \frac{1}{R_i} \quad \text{(resistors in parallel).}
\end{align*} \]
Hence, for the two circuits to be equivalent:

\[-v_s + iR_1 + v_{12} = 0\]

\[i = \frac{v_s}{R_1} - \frac{v_{12}}{R_1}\]

\[i = i_s - iR_2\]

\[= i_s - \frac{v_{12}}{R_2}\]

\[R_1 = R_2\]

\[i_s = \frac{v_s}{R_1}\]
Wye–Delta (Y–Δ) Transformation

Circuit with no two resistors sharing the same current or same voltage
Wye–Delta (Y–Δ) Transformation

Hence,

\[R_1 + R_2 = \frac{R_c(R_a + R_b)}{R_a + R_b + R_c}. \] \hspace{1cm} (2.57a)

When applied to the other two combinations of nodes, the foregoing procedure leads to:

\[R_2 + R_3 = \frac{R_a(R_b + R_c)}{R_a + R_b + R_c} \] \hspace{1cm} (2.57b)

and

\[R_1 + R_3 = \frac{R_b(R_a + R_c)}{R_a + R_b + R_c}. \] \hspace{1cm} (2.57c)
Wye–Delta (Y–Δ) Transformation

Simultaneous solution leads to:

Δ → Y Transformation

\[
R_1 = \frac{R_b R_c}{R_a + R_b + R_c}
\]

\[
R_2 = \frac{R_a R_c}{R_a + R_b + R_c}
\]

\[
R_3 = \frac{R_a R_b}{R_a + R_b + R_c}
\]

Y → Δ Transformation

\[
R_a = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_1}
\]

\[
R_b = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_2}
\]

\[
R_c = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_3}
\]
Table 2-5: Equivalent circuits.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Equivalent</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_2 = \frac{R_a R_c}{R_a + R_b + R_c}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_a = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_b = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_c = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_3}$</td>
</tr>
</tbody>
</table>

- For $R_a = R_b = R_c$ $\Rightarrow R_1 = R_2 = R_3 = R_a / 3$
- For $R_1 = R_2 = R_3$ $\Rightarrow R_a = R_b = R_c = 3R_1$
Summary of Chapter 3 (Parts 1 & 2)

Chapter 3 Relationships

<table>
<thead>
<tr>
<th>Method</th>
<th>Equation</th>
</tr>
</thead>
</table>
| Node-voltage method | \sum of all current leaving a node = 0
 [current entering a node is (−)] | |
| Mesh-current method | \sum of all voltages around a loop = 0
 [passive sign convention applied to
 mesh currents in clockwise direction] | |
| Nodal analysis by inspection | $GV = I_t$ |
| Mesh analysis by inspection | $RI = V_t$ |
Node-Voltage Method

Solution Procedure: Node Voltage

Step 1: Identify all extraordinary nodes, select one of them as a reference node (ground), and then assign node voltages to the remaining \(n_{ex} - 1 \) extraordinary nodes.

Step 2: At each of the \(n_{ex} - 1 \) extraordinary nodes, apply the form of KCL requiring the sum of all currents leaving a node to be zero.

Step 3: Solve the \(n_{ex} - 1 \) independent simultaneous equations to determine the unknown node voltages.

Node 1:

\[
I_1 + I_2 + I_3 = 0.
\]

\[
\frac{V_1}{R_1} + \frac{V_1 - V_0}{R_2 + R_3} + \frac{V_1 - V_2}{R_4} = 0 \quad \text{(node 1)}.
\]

Node 2

\[
\frac{V_2 - V_1}{R_4} - I_0 + \frac{V_2 - V_3}{R_6} = 0 \quad \text{(node 2)},
\]

Node 3

\[
\frac{V_3}{R_5} + \frac{V_3 - V_2}{R_6} + I_0 = 0 \quad \text{(node 3)}.
\]
Node-Voltage Method

Three equations in 3 unknowns:
Solve using Cramer’s rule, matrix inversion, or MATLAB

\[
\begin{aligned}
(\frac{1}{R_1} + \frac{1}{R_2 + R_3} + \frac{1}{R_4}) V_1 - (\frac{1}{R_4}) V_2 &= \frac{V_0}{R_2 + R_3}, \\
-(\frac{1}{R_4}) V_1 + (\frac{1}{R_4} + \frac{1}{R_6}) V_2 - \frac{V_3}{R_6} &= I_0, \\
-(\frac{1}{R_6}) V_2 + (\frac{1}{R_5} + \frac{1}{R_6}) V_3 &= -I_0.
\end{aligned}
\]
Mesh-Current Method

Solution Procedure: Mesh Current

Step 1: Identify all meshes and assign each of them an unknown mesh current. For convenience, define the mesh currents to be clockwise in direction.

Step 2: Apply kirchhoff’s voltage law (KVL) to each mesh.

Step 3: Solve the resultant simultaneous equations to determine the mesh currents.

Two equations in 2 unknowns:
Solve using Cramer’s rule, matrix inversion, or MATLAB

\[-V_0 + I_1 R_1 + (I_1 - I_2)R_3 = 0 \quad \text{(mesh 1)}\]

\[(I_2 - I_1) R_3 + I_2 R_2 = 0 \quad \text{(mesh 2)}\]
Mesh-Current Method

Solution Procedure: Mesh Current

Step 1: Identify all meshes and assign each of them an unknown mesh current. For convenience, define the mesh currents to be clockwise in direction.

Step 2: Apply Kirchhoff's voltage law (KVL) to each mesh.

Step 3: Solve the resultant simultaneous equations to determine the mesh currents.

\[(1 + 2)I_1 - 2I_2 - I_3 = 10, \quad \text{Mesh 1} \]
\[-2I_1 + (2 + 1 + 3)I_2 - I_3 = 0, \quad \text{Mesh 2} \]
\[I_3 = I_x = 4V_1, \quad \text{Mesh 3} \]

But \[V_1 = 2(I_1 - I_2). \]

Hence \[-5I_1 + 6I_2 = 10, \]
\[-10I_1 + 14I_2 = 0. \]

\[I_1 = -14 \text{ A}, \quad I_2 = -10 \text{ A}. \]

\[I_x = 8(I_1 - I_2) = 8(-14 + 10) = -32 \text{ A}. \]
Nodal Analysis by Inspection

- **Requirement:** All sources are independent current sources

\[
\begin{bmatrix}
G_{11} & G_{12} & \cdots & G_{1n} \\
G_{21} & G_{22} & \cdots & G_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
G_{n1} & G_{n2} & \cdots & G_{nn}
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
\vdots \\
v_n
\end{bmatrix}
=
\begin{bmatrix}
i_{t1} \\
i_{t2} \\
\vdots \\
i_{tn}
\end{bmatrix}
\]

- \(G_{kk}\) = sum of all conductances connected to node \(k\)
- \(G_{k\ell} = G_{\ell k}\) = negative of conductance(s) connecting nodes \(k\) and \(\ell\), with \(k \neq \ell\)
- \(V_k\) = voltage at node \(k\)
- \(I_{tk}\) = total of current sources entering node \(k\) (a negative sign applies to a current source leaving the node).

All rights reserved. Do not reproduce or distribute. © 2013 National Technology and Science Press
Mesh by Inspection

Requirement: All sources are independent voltage sources

\[\mathbf{RI} = \mathbf{V}_t, \]

\[
\begin{bmatrix}
R_{11} & R_{12} & \cdots & R_{1n} \\
R_{21} & R_{22} & \cdots & R_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
R_{n1} & R_{n2} & \cdots & R_{nn}
\end{bmatrix}
\begin{bmatrix}
i_1 \\
i_2 \\
\vdots \\
i_n
\end{bmatrix}
= \begin{bmatrix}
v_{t1} \\
v_{t2} \\
\vdots \\
v_{tn}
\end{bmatrix}, \quad (3.29)
\]

where

- \(R_{kk} \) = sum of all resistances in mesh \(k \),
- \(R_{k\ell} = R_{\ell k} \) = negative of the sum of all resistances shared between meshes \(k \) and \(\ell \) (with \(k \neq \ell \))
- \(i_k \) = current of mesh \(k \)
- \(v_{tk} \) = total of all independent voltage sources in mesh \(k \), with positive assigned to a voltage rise when moving around the mesh in a clockwise direction.

\[
\begin{bmatrix}
(2 + 3 + 6) & -3 & -6 \\
-3 & (3 + 4 + 5) & -5 \\
-6 & -5 & (5 + 6 + 7)
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
I_3
\end{bmatrix}
= \begin{bmatrix}
6 - 4 \\
0 \\
4
\end{bmatrix}
\]