LECTURE 9 RC AND RL FIRST-ORDER CIRCUITS (PART 2)

RC and RL First-Order Circuits

Table 5-4: Basic properties of R, L, and C.

<table>
<thead>
<tr>
<th>Property</th>
<th>R</th>
<th>L</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i = \frac{v}{R})</td>
<td>(i = \frac{1}{L} \int dt + i(t))</td>
<td>(i = \frac{v}{C})</td>
<td></td>
</tr>
<tr>
<td>(v = Ri)</td>
<td>(v = L \frac{di}{dt})</td>
<td>(v = C \frac{di}{dt})</td>
<td></td>
</tr>
<tr>
<td>(P) (power transfer)</td>
<td>(P = \frac{1}{2} R i^2)</td>
<td>(P = \frac{1}{2} L \frac{di^2}{dt})</td>
<td></td>
</tr>
<tr>
<td>(U) (internal energy)</td>
<td>0</td>
<td>(U = \frac{1}{2} L i^2)</td>
<td>(U = \frac{1}{2} C v^2)</td>
</tr>
<tr>
<td>Series combination</td>
<td>(R_{eq} = R_1 + R_2)</td>
<td>(L_{eq} = L_1 + L_2)</td>
<td>(C_{eq} = \frac{C_1}{C_1 + C_2})</td>
</tr>
<tr>
<td>Parallel combination</td>
<td>(R_{eq} = \frac{R_1 R_2}{R_1 + R_2})</td>
<td>(L_{eq} = \frac{L_1 L_2}{L_1 + L_2})</td>
<td>(C_{eq} = C_1 + C_2)</td>
</tr>
<tr>
<td>(\Delta) behavior</td>
<td>no-change</td>
<td>short circuit</td>
<td>open-circuit</td>
</tr>
<tr>
<td>Can (v) change instantaneously?</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Can (i) change instantaneously?</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
Response Terminology

Source dependence
Natural response – response in absence of sources
Forced response – response due to external source
Complete response = Natural + Forced

Time dependence
Transient response = time-varying response (temporary)
Steady state response = time-independent or periodic (permanent)
Complete response = Transient + Steady State

Natural Response of Charged Capacitor

\[t = 0^- \] is the instant just before the switch is moved from terminal 1 to terminal 2
\[t = 0^+ \] is the instant just after it was moved
\[t = 0^+ \] is synonymous with \[t = 0^+ \]
since the voltage across the capacitor cannot change instantaneously. It follows that

\[\text{Solution of First-Order Diff. Equations} \]

The standard procedure for solving Eq. (5.5) starts by multiplying both sides by \(e^{\frac{t}{R}} \).

Performing the integration gives

\[\frac{d}{dt} \left(e^{\frac{t}{R}} \right) = 0, \quad (5.52) \]

Next, we recognize that the sum of the two terms on the left-hand side is equal to the expression of the differential of \(e^{\frac{t}{R}} \).

Solving for \(\psi \), we have

\[\int e^{\frac{t}{R}} \, dt = \int 0 \, dt, \quad (5.53) \]

Hence, Eq. (5.52) becomes

\[\frac{d}{dt} \left(e^{\frac{t}{R}} \right) = 0; \quad (5.54) \]

Integrating both sides, we have

\[\int e^{\frac{t}{R}} \, dt = \int 0 \, dt, \quad (5.55) \]

\(t = RC \) (6)
Natural Response of Charged Capacitor

$$i(t) = C \frac{dV}{dt} = C \frac{d}{dt}(V_0 e^{-t/\tau})$$
$$= -\frac{V_0}{\tau} e^{-t/\tau} \quad \text{(for } t \geq 0)$$

which simplifies to

$$i(t) = \frac{V_0}{R} e^{-t/\tau} u(t) \quad \text{(for } t \geq 0)$$

where \(u(t) \) is the unit step function.

The current \(i(t) \) decays exponentially to zero as \(t \) increases.

General Response of RC Circuit

The voltage equation for the loop in Fig. 5.5(c) is

$$v_i(t) + i(t) R + v(t) = 0$$

Using \(i = C \frac{dv}{dt} \) and rearranging its terms, Eq. (5.18) can be written in the differential equation form

$$\frac{dv}{dt} + \frac{1}{RC} v = 0$$

where \(\alpha = \frac{1}{RC} \) and \(\beta = \frac{V_0}{RC} \).

Solution of

By introducing the time constant \(\tau = RC \) and replacing \(\beta \) with \(v(t) \), we can rewrite Eq. (5.18) in the general form.

$$v(t) = \alpha (1 + e^{-\alpha t})$$

Upon evaluating the function at the two limits, we have

$$v(0) = \alpha (1 + e^{-\alpha \cdot 0}) = \beta$$

and upon solving for \(\beta \), we have

$$\beta = \alpha (1 + e^{-\alpha \cdot 0})$$

And upon solving for \(v(t) \), we have

$$v(t) = \beta (1 - e^{-\alpha t})$$

For the switch action causing the change in voltage across the capacitor occurs at time \(t = T_0 \) instead of \(t = 0 \), Eq. (5.18) assumes the form

$$v(t) = \beta (1 - e^{-\alpha (t - T_0)})$$

switch closure at \(t = T_0 \).
Example 5-10: Determine Capacitor Voltage

At \(t = 0 \)
(a) Switch was moved at \(t = 0 \)

\[v(t) = v(0) + \frac{1}{C} \int i(t) \, dt \]

\[v(t) = \left(\frac{16}{3} \right) + \left(\frac{1}{10^3} \right) \times 30 = 30 \text{ V} \]

Hence,
\[R = \frac{10^3}{2} = 5 \times 10^3 \text{ k} \Omega \]

(b) Switch was moved at \(t > 0 \)

At \(t > 0 \)

Example 5-11: Charge/Discharge Action

Given that the switch in Fig. 5.32 was moved to position 2 at \(t = 0 \) and then returned to position 1 at \(t = 10 \text{ s} \), determine the voltage across \(C \) for \(t > 0 \) and calculate it for \(t = 10 \text{ s} \).

\(R_1 = 20 \text{ k} \Omega \), \(R_2 = 30 \text{ k} \Omega \), and \(C = 0.25 \mu \text{F} \).

Time Segment I: \(0 \leq t \leq 10 \text{ s} \)

When the switch is in position 2 (Fig. 5.32(b)), the resistance of the circuit is \(R = R_2 \). Hence, the time constant during this time segment is:

\[\tau = R \times C = \left(30 \times 10^3 \right) \times 0.25 \times 10^{-6} = 7.5 \text{ s} \]

\[v(t) = v(0) + \left(\frac{v(t)}{v(t)} \right) \int t \tau \, dt = v(t) = v(0) + \left(\frac{1}{v(t)} \right) \times \int t \tau \, dt \]

\[v(t) = v(0) + \left(\frac{1}{v(t)} \right) \times \int t \tau \, dt = v(t) = v(0) + \left(\frac{1}{v(t)} \right) \times \int t \tau \, dt \]

\[v(t) = v(0) + \left(\frac{1}{v(t)} \right) \times \int t \tau \, dt = v(t) = v(0) + \left(\frac{1}{v(t)} \right) \times \int t \tau \, dt \]

\[v(t) = v(0) + \left(\frac{1}{v(t)} \right) \times \int t \tau \, dt = v(t) = v(0) + \left(\frac{1}{v(t)} \right) \times \int t \tau \, dt \]
Example 5-11 (cont.)

Voltage \(v(t) \), corresponding to the second time segment (Fig. 5-2(c)), is given by Eq. 5.30 with time constant \(t_0 \) as:

\[v(t) = v(t_0) e^{-t/t_0}. \]

The time constant is associated with the equivalent circuit remaining after turning the switch to position 1.

\[t_0 = RC = 20 \times 10^3 \times 0.25 \times 10^{-3} = 5 \text{ s}. \]

The initial voltage \(v(t) = 12 \text{ V} \) is equal to the capacitor voltage \(v_C \) at the end of the time segment 1, namely:

\[v(t_0) = v_C = 12 V = 6.5 \text{ V} \text{ at } t = 10 \text{ s}. \]

Example 5-12: Rectangular Pulse

When the circuit is linear, we can apply the superposition theorem to determine the response \(v(t) \). Thus,

\[\begin{align*}
 \text{(a)} & \quad k(t) = \frac{v(t)}{R} = \frac{12}{10} = 1.2 \text{ V} \\
 \text{(b)} & \quad k(t) = \frac{v(t)}{R} = \frac{12}{10} = 1.2 \text{ V} \\
 \text{(c)} & \quad k(t) = \frac{v(t)}{R} = \frac{12}{10} = 1.2 \text{ V} \\
 \text{(d)} & \quad k(t) = \frac{v(t)}{R} = \frac{12}{10} = 1.2 \text{ V} \\
 \text{(e)} & \quad k(t) = \frac{v(t)}{R} = \frac{12}{10} = 1.2 \text{ V}.
\end{align*} \]

Natural Response of the RL Circuit

\[R_0 + \frac{L}{C} \frac{dI}{dt} = 0, \]

which can be cast in the form

\[\frac{d}{dt} \left(\frac{1}{2} \right) = \frac{1}{L} \]

where \(R_0 \) is the resistance constant given by

\[r = \frac{1}{L}. \]

where for the RL circuit, the time constant is given by

\[t = \frac{L}{R}. \]
Example 5-13: Two RL Branches

After having been in position 1 for a long time, the SPDT switch in Fig. 5-13(a) was moved to position 2 at \(t = 0\). Determine \(i_1\), \(i_2\), and \(i_3\) for \(t \geq 0\), given that \(V_s = 9.0\,\text{V}\), \(R_s = 4.0\,\Omega\), \(R_1 = 6.0\,\text{k}\Omega\), \(R_2 = 12.0\,\Omega\), \(L_1 = 1.2\,\text{H}\), and \(L_2 = 0.86\,\text{H}\).

At \(t = 0^+\):

Application of KVL to node \(V\) gives:

\[
\frac{V_s}{R_s} = \frac{V}{R_1} + \frac{V}{R_2} = 0.
\]

where solution is:

\[
\frac{V_s}{R_s} = \frac{R_2}{R_1 + R_2 + R_s} = \frac{12.0}{12.0 + 6.0} = 0.68\,\text{V}.
\]

Hence, the initial currents \(i(t_0)\) and \(i'(t_0)\) are given by:

\[
i(t_0) = \frac{V}{R_1} = \frac{4.8}{12.0} = 0.4\,\text{mA}
\]

and

\[
i'(t_0) = \frac{V}{R_2} = \frac{4.8}{6.0} = 0.8\,\text{mA}.
\]

Example 5-13: Two RL Branches (cont.)

After \(t_0\):

\[
i(t) = i(t_0) + i_0(t) = i(t_0) + \frac{i}{i} + \left[\left(\frac{1}{\tau_1}\right)\,e^{-t/\tau_1}\right].
\]

and

\[
i(t) = i(t_0) + i_0(t) = i(t_0) + \frac{i}{i} + \left[\left(\frac{1}{\tau_2}\right)\,e^{-t/\tau_2}\right],
\]

where \(i_0\) and \(i_1\) are the time constants of the two RL circuit branches

\[
\tau_1 = \frac{L_1}{R_1} = \frac{1.2}{6.0} = 2.0 \times 10^{-6}\,\text{s}
\]

and

\[
\tau_2 = \frac{L_2}{R_2} = \frac{0.36}{12.0} = 3.0 \times 10^{-6}\,\text{s}.
\]

The current flowing through the short circuit is simply:

\[
i(t) = i_0(t) + \frac{i}{i} + \left[\left(\frac{1}{\tau_1}\right)\,e^{-t/\tau_1}\right] + \left[\left(\frac{1}{\tau_2}\right)\,e^{-t/\tau_2}\right].
\]