Circuit Representation

![Circuit Diagram](image)

Common Circuit Elements

- **Branch:** single element, such as a resistor or source
- **Node:** connection point between two or more branches
- **Extraordinary Node:** connection point between at least 3 branches
- **Loop:** closed path in a circuit

![Circuit Diagram](image)
Terminology

Planar Circuits

Planar circuits: can be drawn in 2-D without branches crossing each other.
Whenever possible, re-draw circuit to simplify!

Charge & Current

Unit of charge = coulomb

\[e = 1.6 \times 10^{-19} \text{ (C)} \]
Electron Drift

Response time = 0.2 microsecond
Actual travel time = 10 days!!

Current

Example 1-1: Charge Transfer

Given:
\[i(t) = \begin{cases}
0 & \text{for } t < 0, \\
6 - 2t & \text{for } t \geq 0.
\end{cases} \]

Determine: (a) \(q(t) \)
(b) \(\Delta Q(1,2) \)

Solution:
\[dq = i \, dt \\
\int_{-\infty}^{t} dq = \int_{-\infty}^{t} i \, dt \\
q(t) - q(-\infty) = \int_{-\infty}^{t} i \, dt \\
q(t) = \int_{-\infty}^{t} i \, dt \]
Example 1-1: Charge Transfer (cont.)

(b) \[q(t) = \int_0^t \frac{e^{-\alpha t}}{2} \, dt = \frac{e^{-\alpha t} - 1}{\alpha^2}, \]
\[\Rightarrow q(1) = \frac{e^{-\alpha} - 1}{\alpha^2}. \]

\[\Delta Q(t_2) - \Delta Q(t_1) = \int_{t_1}^{t_2} e^{-\alpha t} \, dt = \frac{e^{-\alpha t_2} - e^{-\alpha t_1}}{\alpha}. \]

For \(t_1 = 1 \) and \(t_2 = 2 \), and \(e^{-\alpha} = 0.2 \),

\[\Delta Q(2) = \int_0^2 \frac{0.2 \, dt}{e^{-\alpha}} - \frac{e^{-2\alpha} - 1}{\alpha^2} = 0.45 \, C. \]

Voltage & Power

Any material

\[V_{ab} = \frac{dw}{dq}, \]

The voltage between location \(a \) and location \(b \) is the ratio of \(dw \) to \(dq \), where \(dw \) is the energy in joules (J) required to move (positive) charge \(dq \) from \(b \) to \(a \) (or negative charge from \(a \) to \(b \)).

Reference/Ground

- Choose reference point for potential
- Assign potential at reference = 0, called \textit{ground}
- Now all potentials are relative to ground terminal
Measuring Voltage & Current

- **Voltmeter**: measures voltage without drawing current
- **Ammeter**: measures current without dropping voltage

Open Circuit & Short Circuit

- **Open circuit**: no path for current flow \((R = \infty) \)
- **Short circuit**: no voltage drop \((R = 0) \)

Power

Rate of expending or absorbing energy

\[
P = \frac{dv}{dt} = \frac{dw}{dq} = \frac{dq}{dt} = \frac{dV}{dt}
\]

Units: watts
One watt is power rate of one joule of work per second. \(1 \text{ W} = 1 \text{ A} \times 1 \text{ V} \)
Passive Sign Convention

Passive Sign Convention

\[p > 0 \quad \text{power delivered to device} \]

\[p < 0 \quad \text{power supplied by device} \]

*Note that current is defined as arriving at (+) side of \(p \).

Example 1-4: Energy Consumption

- **Given:** Resistor consuming 20 W before switch turned off at \(t = 0 \).

 Also

 \[v(t) = 100e^{-2t} \quad \text{V} \quad \text{for} \ t > 0 \]

- **Determine:** Total energy consumed by resistor after \(t = 0 \).

- **Solution:**

 \[i(t) = \frac{20}{100} = 0.2 \quad \text{A} \quad \text{for} \ t \geq 0. \]

 The instantaneous power is

 \[p(t) = v(t) \cdot i(t) = \left(100e^{-2t}\right) \cdot 0.2 = 20e^{-2t} \quad \text{W}. \]

 \[W = \int_{0}^{\infty} p(t) \, dt = \frac{20}{2} \left(1-e^{-2t}\right) \bigg|_{0}^{\infty} = 5 \quad \text{J}. \]

Circuit Elements: Independent Sources

- **Independent Sources**

 - Ideal Voltage Source

 \[V_{o} \]

 - Ideal Current Source

 \[I_{o} \]

 - Any Source

 \[V(t) = \text{Any source} \]

 \[I(t) = \text{Any source} \]
Circuit Elements: Dependent Sources

I-V for Sources

- Current/voltage fixed for independent sources
- What does a non-ideal source look like?
- Dependent sources vary with reference voltage/current
- What are units for slope?

Equivalent Circuit Using Dependent Source
Example 1-5: Dependent Source

Given:

- Source is CCVS

Determine: \(V_1 \)
Solution: \(I_1 = \frac{10}{2} = 5 \text{ A} \)

Consequently:

\(V_1 = 4I_1 = 4 \times 5 = 20 \text{ V} \).

Switches

- Diagrams of various switch configurations.

Summary

Chapter 1 Relationships

- General
 - Direction of \(i \) is into boundary of device
 - Power
 - \(P = \text{device shunts power} \)
 - \(P = \text{device delivers power} \)

- Relationships
 - Resistance: \(R = \frac{V}{I} \)
 - Capacitance: \(C = \frac{Q}{V} \)
 - Inductance: \(L = \frac{V}{I} \)