Notes on Experiment #8

Theorems of Linear Networks

Prepare for this experiment!

If you prepare, you can finish in 90 minutes. If you do not prepare, you will not finish even half of this experiment. So, do your preliminary work. Set up data tables and graphs before you come to lab.

Bring cm × cm graph paper

Measure the Resistors First!

The resistors must be accurate in this experiment. Discard any with an error greater than 5%. Ask your lab instructor for a replacement.

The resistor values should be:

- Part 1:
 \[R_S = 3.3K \text{ (DC case)}; \ R_S \text{ will be determined experimentally (AC case)} \]

- Parts 2 and 3:
 \[R_1 = 3.3K; \ R_2 = 6.8K; \ R_3 = 4.7K; \ R_4 = 10K \]

Procedure

We will do the experiment almost "as is" in the experiment. The discussion below gives a bit more detail about the procedures of this experiment.
Part 1: Maximum Power Transfer Theorem

We will do this part twice. The first time through we will use a pure DC source. See Figure 1. The second time through we will use a pure AC source. See Figure 2.

For each case above we will **measure and record** V_L for ten different test values of R_L in the range $0.1R_S$ to $10R_S$. This, of course, will require you to know the value of R_S. It is very important to include $R_L = R_S$ as the center test value of set of R_L. So use this set of R_L:

$$R_L = \{0.1R_S, 0.3R_S, 0.5R_S, 0.7R_S, R_S, 2R_S, 5R_S, 8R_S, \text{and } 10R_S\}$$

You will then calculate the power absorbed by R_L:

$$P_{ABS,RL} = \frac{(V_{RL})^2}{R_L}$$

for each value of R_L. Use your data to plot $P_{ABS,RL}$ as a function of R_L.

To begin each case you will measure V_{OC}, the "open-circuit" voltage. See Figure 3. This is the case when $R_L = \infty$, i.e. there is no R_L connected. Note that $V_{OC} = V_S$. Then connect a variable resistor as R_L and adjust R_L until the voltage V_L becomes exactly $0.5V_{OC}$. When $V_L = 0.5V_{OC}$ then we know that R_L is exactly equal to R_S. (See circuit analysis below.) So, we have just experimentally found R_S! Use this value of R_S to determine the test values required as explained above and measure the voltages V_L as explained above.

Part 1A: DC Case

Build the circuit using these discreet values:

- $V_S = 8$ volts DC. (Use one side on the dual DC supply)
- $R_S = 3.3K$ (So we know R_S in advance. However use the above technique to verify that $R_L = R_S$ when $V_L = 0.5V_{OC}$)

Now get the data for the various R_L and plot the power curve.

Part 1B: AC Case

The circuit is the Function Generator! R_S and V_S are inside the function generator. DO NOT INCLUDE AN EXTERNAL R_S!!!

Set $V_S = 5$ Volts RMS (Pure AC. The DC = 0.) To set this just use the DMM to measure the AC voltage at the terminals of the function generator and adjust the amplitude control until the AC (RMS) meter reads 5.00 Volts. Now connect the resistor decade box as R_L and follow the above procedures to determine the value of the internal R_S of the function generator. Now get the data for the various R_L and plot the power curve.

Answer these questions:
1. Does $R_L = R_S$ when $V_L = 0.5V_{OC}$?
2. Does $R_L = R_S$ when the maximum power is being delivered to R_L?

Part 2: Linearity

Part 2A: DC Point by Point Plot (The hard way)

1. Set up the circuit in Figure 4. Use a DC supply for V_S.
2. Measure V_O for these values of V_S:
 $$V_S = \{-4, -2, -1, 0, 1, 2, \text{ and } 4\} \text{ Volts.}$$
3. Plot V_O as a function of V_S. Connect the points to get a continuous relation. Is the relation linear?
4. Verify that the slope V_O/V_S is the same value as calculated in your circuit analysis.

Part 2B: Automatic Plotting (The easy way)

1. Set up the circuit in Figure 5. Use the function generator for V_S.
2. Connect the scope as indicated in Figure 5.
3. **Scope Setup**
 a. Put the scope in "X-Y" mode.
 b. Set both channels to GND and position the "dot" to center screen.
 c. Now set both channels to 1 Volt/DIV
4. **Function Generator Setup:**
 a. Turn DC to Off
 b. Use a sinusoidal waveform
 c. Set AC amplitude to maximum
 d. Set frequency to a "low" value ~60 to 120 Hz (whatever frequency gives the best or "cleanest" image)
5. You should now see a continuous plot of V_O as a function of V_S. Sketch it. Is the relation linear?
6. Verify that the slope V_O/V_S is the same value as calculated in your circuit analysis.

Are the plots from the above two methods the same? Which method was easier?

Part 3: Superposition

1. Set up the circuit in Figure 6.
2. Use the DMM to accurately set:
 a. $V_{S1} = 5.00$ Volts.
 b. $V_{S2} = 4.00$ Volts.
3. Now verify that superposition holds for V_1 and I_2. This requires that you show that:
 a. $V_1|_{(V_{S1} = 5, V_{S2} = 0)} + V_1|_{(V_{S1} = 0, V_{S2} = 4)} = V_1|_{(V_{S1} = 5, V_{S2} = 4)}$
and

\[I_2(\text{VS1} = 5, \text{VS2} = 0) + I_2(\text{VS1} = 0, \text{VS2} = 4) = I_2(\text{VS1} = 5, \text{VS2} = 4) \]

4. **HINT:** After setting the sources, the best way to go back to Zero Volts (as is needed during data taking) is to remove the cables from a voltage source terminals and connect the cables together. You will have the Zero Volts required. Then, when you need the non-zero value again, just plug the cables back into the source. That way you do not waste time re-setting the source voltages.

5. So, fill in a data table like the one below and verify that the addition of rows one and two is equivalent to row three for each column.

<table>
<thead>
<tr>
<th>Row</th>
<th>(V_{S1})</th>
<th>(V_{S2})</th>
<th>(V)</th>
<th>(I_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Superposition Data Table

Set up appropriate data tables and plots for all the expected data for each part.

You will then compare this data to the calculated values from your circuit analysis and do error analysis for each part.

Circuit Analysis

Note: An arrow through a resistor is the circuit symbol for a variable resister. Your Lab instructor will show you how to use the POWER RESISTOR DECADE BOX as a variable resistor.

Part 1A: DC Case

- \(R_S = 3.3K \), and
- \(V_S = 8 \text{ Volts DC} \)
Part 1B: AC Case

- $R_S = 50$ Ohms, and
- $V_S = 5$ Volts AC (RMS)

For each circuit above the "open circuit voltage" V_{OC} is the value of V_L when R_L is infinite. Note that in that case

$V_{OC} = V_S$. See Figure 3.

Note that in Figures 1 and 2 if $R_L = R_S$ then

$V_L = 0.5V_S = 0.5V_{OC}$.

Which can be found easily by voltage division.

Also, when we have the above conditions, R_L is absorbing the maximum power that the circuit is able to deliver. See pages 143-145 in your text for a proof.

Part 2: DC Point-by-Point Plot

For the circuit in Figure 4. find the ratio of V_O/V_S. You can do this using by successive voltage division of V_S. Note that this ratio is a constant now matter what the value of V_S. Show all of your work.
Part 2 Elements:

\[R_1 = 3.3\, \text{K} \]
\[R_2 = 6.8\, \text{K} \]
\[R_3 = 4.7\, \text{K} \]
\[R_4 = 10\, \text{K} \]

\(V_S = \{ -4, -2, -1, 0, 1, 2, \text{ and } 4 \, \text{volts} \} \)

Part 2: AC Continuous Plot

The circuit in Figure 5 shows how to connect the oscilloscope to easily verify linearity.

![Figure 4](image4)

![Figure 5](image5)

Part 3: Superposition

Use the principle of superposition to find \(V_1 \) and \(I_2 \) for the circuit in Figure 6. Show all of your work.

Part 3 Elements:

\[R_1 = 3.3\, \text{K} \]
\[R_2 = 6.8\, \text{K} \]
\[R_3 = 4.7\, \text{K} \]
\[R_4 = 10\, \text{K} \]

![Figure 6](image6)
$V_{S1} = 5\text{ volts.}$
$V_{S2} = 4\text{ volts.}$

Have fun.
ECE 225 Experiment #8

Theorems of Linear Networks

Purpose: To illustrate linearity, superposition, and the maximum power transfer theorem.

Equipment: Agilent 54622A Oscilloscope, Agilent 34401A Digital Multimeter (DMM), Agilent E3631A Triple Output DC Power Supply, Universal Breadbox

I. Maximum Power Transfer Theorem

Set up the circuit in Figure 1. For the variable load resistor R_L use a decade resistor box. Measure V_L and calculate the power absorbed in R_L, for a variety of values of resistance from $R_S/10$ to $10R_S$. Plot the values of power absorbed vs. the load resistance R_L. Find the value of R_L which corresponds to a maximum on the graph. This should be the same value as R_S. Is it? Comment. Comment also on the accuracy of this technique as a way of determining the value which maximizes the power transfer. Comment on the deviation from maximum which occurs when the load resistor deviates from the optimum value by 50 percent.

![Circuit Diagram](image)

Figure 1.

A much more accurate way to determine the value of R_L which maximizes power transfer is to make use of the Thevenin equivalent of the network in question. If the network is represented by its Thevenin equivalent (V_{OC} and R_{TH} in series) then when $R_L = R_{TH}$, the voltage across the R_L will be $V_{OC}/2$. Thus the Thevenin equivalent resistance of any linear network can be determined by (1) measuring V_{OC}, and (2) attaching an R_L and changing it until the load voltage is $V_{OC}/2$. This value maximizes the power transfer. Use this technique on the circuit above.
This technique also works if the sources in the network are sinusoidal, the
difference being that RMS measurements are made rather than DC measurements.
Adjust the function generator for zero DC offset and a frequency of 1 KHz. Then
using the method of the previous paragraph, determine the R_{TH} of the function
generator (which, although shown as an ideal source in the circuit, actually has a
nonzero internal resistance), and using the less accurate graphical method find the
value of R_L which maximizes the power transfer from the generator to its load.

II. Linearity

Set up the circuit in Figure 2. Take enough readings of V_S and V_O to make an
accurate graph of V_O (vertically) on the graph vs. V_S (horizontally). A smart way
to do this is to use the scope in the "X-Y" mode, using V_S as the X (CH1) input
and V_O as the Y (CH2) input, with the signal generator, running as a triangle
generator, attached to the input terminals. Record the graph and comment on the
linearity of the input/output relationship.

![Figure 2.](image)

III. Superposition

Set up the linear circuit Figure 2, using the dual DC source. Set $V_{S1} = 5$ Volts
and $V_{S2} = 0$ Volts, and record V_4 and I_1. Then set $V_{S1} = 0$ Volts and
$V_{S2} = 4$ Volts, and record V_4 and I_1 again. Finally set $V_{S1} = 5$ and $V_{S2} = 4$
and record V_4 and I_1 once more. Comment on the relationship between the sets of
readings.
Figure 3.