Defect-Tolerant Logic Implementation on Nanorossbars by Exploiting Logic Mapping & Morphing Simultaneously

Yehua Su, Wenjing Rao
Outline

- Nanocrossbar & background
- Defect Tolerant Logic Implementation
 - Mapping
 - Morphing
 - Integration of Mapping and Morphing
- Simulation Results
- Conclusions
Nanoscale Fabrication

- Bottom-up
 - Small structures
 - Self-assembly process
- Why?
 - Possibly the only viable way to construct nanoelectronic systems economically

▲ Implications:
- Lead to large # of defects
- Result in regular structures
- Require reconfigurability
On the Rise: NanoCrossbar

- Advantage: Compatibility to
 - Bottom-up fabrication
 - PLA-like logic
 - Multiple nano device candidates
Change in the Flow

PLA manufacturing → testing → Good PLAs → Logic Synthesis & Optimization → 2-level Logic Function → Behavioral Description

Nano Crossbar manufacturing → testing → nano-crossbar With Defect Map

D-T Logic Implementation
Defect Tolerance

- **Challenging**
 - like testing, but harder?

- **Reconfigurability + regularity**
 - like BISR, but harder?

Device configurability

Other flexibilities?
Modeling

- Matrix representation for logic function & crossbar

\[f = ab + bc' \]

\[
\begin{array}{ccc}
 a & b & c' \\
 ab & 1 & 1 & 0 \\
 bc' & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
 X & 0 & X \\
 0 & 1 & X \\
 1 & X & 1 \\
\end{array}
\]
Mapping is then...

- **Row & Column correspondence**

 \[
 \begin{array}{ccc}
 a & b & c' \\
 1 & 1 & 0 \\
 0 & 1 & 1 \\
 \end{array}
 \]

- **Cell compatibility**

 - compatible

 \[
 \begin{array}{ccc}
 0 & 1 & x \\
 0 & 1 & 1 \\
 \end{array}
 \]

 - mismatch

 \[
 \begin{array}{ccc}
 0 & 1 & 0 \\
 \end{array}
 \]
Mapping Example

- Invalid with 3 mismatches

\[f = ab + bc' \]

\[f' = b + ab \]
Try another way...

- Perfect mapping without mismatches

\[f = ab + bc' \]
Backtracking Framework

Logic function

\[\text{crossbar} \]

\[v_1, v_2, \ldots \]

\[p_1, p_2, \ldots \]

\[c_1, c_2, \ldots \]

\[r_1, r_2, \ldots \]

\[M_1, M_2, \ldots, M_k, \ldots, M_v! x p! \]
Heuristics

- BT tree structure:
 - Col / Row interleaving

- Mapping trial selection
 - Preserving X’s
 - Efficient pruning
Challenges

• Solution space is huge
• NP-complete
 - Runtime - mapping is per chip!
 - Yield
Some mismatches are ok...

- \(f\) & \(g\) equivalent in this case

\[
f = ab + ac + bc' \\
g = abc + ac + bc'
\]
Equivalent Morphing Forms

c’d’+a’c’d+abcd+ab’c’

ac’d’+a’c’+abcd+ab’c

c’d’+a’c’+abcd+ab’c
How would Morphing help?

- Perfect
- MM -> equivalent
- MM -> changed function

Promising, but...
- Infinite # of forms
- Equivalent checking overhead
- Integration with mapping
Logic Equivalence Checking

- General Logic Eq Checking is hard
- But it’s much easier when...
 - The two functions are similar

- Method - divide and conquer
 - Shannon Expansion

\[
\begin{align*}
 f(x_1, x_2, \ldots, x_n) &= x_i' f(x_i=0) + x_i f(x_i=1) \\
 g(x_1, x_2, \ldots, x_n) &= x_i' g(x_i=0) + x_i g(x_i=1)
\end{align*}
\]

- Mismatch -> splitting var \(x_i \)
Splitting on MM var makes it easy

\[f = c'd' + a'c'd + acd + ab'c \]

\[g = c'd' + a'c'd + acd + ab'c \]

\[d = 0 \]
\[d = 1 \]
During mapping process, instead of BT, turn to LEC
If tolerable, move on to new f’
Otherwise, BT
Amortizing Runtime

Trading runtime w/ storage: Hash-table

1) Pre-profiling (off-line)
 - A mismatch analysis for function
 - limited to 1 or 2 mismatches

2) Dynamically buildup (online)
 - Invoke LEC during mapping process

<table>
<thead>
<tr>
<th>key (val, product)</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3,5), (4,12)</td>
<td>Y</td>
</tr>
<tr>
<td>(14, 8)</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>(3,7), (24,87)</td>
<td>Y</td>
</tr>
<tr>
<td>(3,7), (24,87), (10, 5)</td>
<td>Y</td>
</tr>
</tbody>
</table>

mm location: (3,7), (24,87), (10, 5)
Experimental Results: Yield

Benchmark sqrt8(size 40x16) Benchmark sao2(size 58x20)

Mapping + Morphing

Success due to Morphing
Best improvement

Yield Comparison

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>con1 (9x14x2)</td>
<td>30% mapping</td>
</tr>
<tr>
<td>rd53 (32x10x3)</td>
<td>20% mapping</td>
</tr>
<tr>
<td>misex1 (32x16x7)</td>
<td>20% mapping</td>
</tr>
<tr>
<td>sqrt8 (40x16x4)</td>
<td>40% mapping</td>
</tr>
<tr>
<td>sao2 (58x20x4)</td>
<td>40% mapping</td>
</tr>
<tr>
<td>5xp1 (75x14x10)</td>
<td>20% mapping</td>
</tr>
<tr>
<td>bw (87x10x28)</td>
<td>100% mapping</td>
</tr>
<tr>
<td>9sym (87x18x1)</td>
<td>10% mapping</td>
</tr>
</tbody>
</table>
Runtime cost

Average runtime cost for finding a valid mapping (not counting the ones hitting runtime upperbound)

Benchmark con1(9x14)

Benchmark sa02(size 58x20)
Conclusions

- Defect-tolerant logic implementation becomes a fundamental issue for nanocrossbars
- Mapping helps – perfect implementation exploiting defects
- Morphing helps – some mismatches are tolerable due to equivalent functionalities
- The two schemes can be carried out in a unified framework
- Improving yield without adding cost