Problem 1
Consider the LR-circuit shown below driven by an input current source $i_{in}(t)$ where the output is taken as voltage $v_{out}(t)$. Assume that the circuit is at rest, i.e., $i_L(0^-)=0A$.

(a) Determine $V_{out}(s)$ as a function of $I_{in}(s)$.
(b) Determine $v_{out}(t)$ if $i_{in}(t) = I_mu(t)$, where I_m is a constant.
(c) Determine the impulse response, i.e., determine $v_{out}(t)$ if $i_{in}(t) = K \delta(t)$, where K is a constant and represents the weight of the impulse.

Problem 2
Consider the LRC-circuit shown below driven by an input voltage source $v_{in}(t)$ where the output variables are the capacitor voltage $v_{C}(t)$ and the inductor current $i_{L}(t)$. The component values are $R = 5\Omega$, $L = \frac{1}{2}H$ and $C = \frac{1}{8}F$. Assume that the circuit is at rest, i.e., $i_L(0^-)=0A$ and $v_C(0^-)=0V$.

(a) Determine $V_{C}(s)$ as a function of $V_{in}(s)$.
(b) Determine $I_{L}(s)$ as a function of $V_{in}(s)$.
(c) Determine $v_{C}(t)$ if $v_{in}(t) = K \delta(t)$, where K is a constant.
(d) Determine $i_{L}(t)$ if $v_{in}(t) = K \delta(t)$, where K is a constant.
(e) Determine $v_{C}(t)$ if $v_{in}(t) = K u(t)$, where K is a constant.
(f) Determine $i_{L}(t)$ if $v_{in}(t) = K u(t)$, where K is a constant.
Problem 3
Consider the opamp-based RC-circuit shown below driven by an input voltage source $v_{in}(t)$, which is a pulse of magnitude V_m and duration t_0. Assume that the opamp is ideal and the circuit is at rest, i.e., $v_C(0^-)=0V$.

![RC circuit diagram]

(a) Determine $V_{out}(s)$ as a function of $V_{in}(s)$.
(b) Determine $v_{out}(t)$ if $v_{in}(t)$ is the pulse shown in the schematic.
(c) Sketch $v_{out}(t)$ vs. t.

Problem 4
Consider the opamp-based RC-circuit shown below driven by an input voltage source $v_{in}(t)$. Assume that the opamp is ideal and the circuit is at rest, i.e., $v_C(0^-)=0V$.

![RC circuit diagram]

(a) Determine $V_{out}(s)$ as a function of $V_{in}(s)$.
(b) Find the unit impulse response, i.e., find $v_{out}(t)$ if $v_{in}(t) = \delta(t)$.
(c) Find the unit step response, i.e., find $v_{out}(t)$ if $v_{in}(t) = u(t)$.
Problem 5
Consider the opamp-based RC-circuit shown below driven by an input voltage source $v_{in}(t)$. Assume that the opamp is ideal and the circuit is at rest, i.e., $v_{C}(0^-)=0V$.

(a) Determine $V_{out}(s)$ as a function of $V_{in}(s)$.
(b) Find the unit impulse response, i.e., find $v_{out}(t)$ if $v_{in}(t) = \delta(t)$.
(c) Find the unit step response, i.e., find $v_{out}(t)$ if $v_{in}(t) = u(t)$.

Problem 6
Consider the LRC-circuit shown below driven by an input voltage source $v_{in}(t)$ where the output variables are the capacitor voltage $v_{C}(t)$ and the inductor current $i_L(t)$. The component values are $R = 5\,\Omega$, $L = \frac{1}{2}\,\text{H}$ and $C = \frac{1}{8}\,\text{F}$. Assume that the initial conditions are $i_{L}(0^-)=4\,\text{A}$ and $v_{C}(0^-)=4\,\text{V}$.

(a) Determine $V_{C}(s)$ as a function of $V_{in}(s)$.
(b) Determine $I_{L}(s)$ as a function of $V_{in}(s)$.
(c) Determine $v_{C}(t)$ if $v_{in}(t) = 5u(t)$.
(d) Determine $i_{L}(t)$ if $v_{in}(t) = 5u(t)$.

Dr. Vahe Caliskan
Posted: July 27, 2013
Problem 7
Consider the system shown below where the \(x(t) \) is the input and \(y(t) \) is the output. If the system is characterized by the impulse response \(h(t) = \sin(\omega_0 t) u(t) \), determine the output \(y(t) \) if the input \(x(t) \) is a pulse with magnitude \(K \) of duration \(t_2 - t_1 \) as shown below. Recall that \(y(t) = x(t) * y(t) \).

\[
\begin{array}{c}
0 \quad t_1 \quad t_2 \\
K \quad x(t) \quad h(t) \quad y(t)
\end{array}
\]

Problem 8
Consider the \(LC \)-circuit shown below driven by an input voltage source \(v_{in}(t) \) where the output variable is the capacitor voltage \(v_{C}(t) \). Assume that the circuit is at rest, i.e., \(i_L(0^-)=0A \) and \(v_C(0^-)=0V \).

\[
\begin{array}{c}
i_L(t) \quad L \quad + \quad + \\
v_{in}(t) \quad C \quad v_C(t) \quad - \\

\end{array}
\]

(a) Determine \(V_C(s) \) as a function of \(V_{in}(s) \).

(b) Find the unit impulse response, i.e., find \(v_{C}(t) \) if \(v_{in}(t) = \delta(t) \).

(c) Find the unit step response, i.e., find \(v_{C}(t) \) if \(v_{in}(t) = u(t) \).