1. For each circuit below, find the following:
 (a) \(z \) as a logical function of \(x \) and \(y \)
 (b) truth table showing \(x, y \) as inputs and \(z \) as an output. You may find it useful to generate rows for \(p \) and \(q \) as intermediate variables.

 [Diagrams of circuit #1 and circuit #2]

2. Draw logic circuits that realize the following logic functions,
 (a) \(z = xy + x'y' \) (\(x, y \) are inputs; \(z \) is output)
 (b) \(w = xyz + y(x'z + x'(y'z')) \)
 (\(x, y, z \) are inputs; \(w \) is the output)
 (c) \(w = (x+y+z)(xy'+z')(x+y'z) \)
 (\(x, y, z \) are the inputs; \(w \) is the output)

3. For the circuits in Problem 1, determine the waveform for \(z \), if \(x \) and \(y \) waveforms are as follows:

 [Waveforms for \(x \) and \(y \) with time intervals]