Problem 1 (6 points)
Consider the following logic circuit with inputs a and b and output z and intermediate outputs x and y.
(a) (2 points) Write x as a logical function of a and b.
(b) (2 points) Write y as a logical function of a and b.
(c) (2 points) Write z as a logical function of a and b.

Problem 2 (4 points)
Draw two periods of a 0V/5V pulse waveform with a frequency of 10 Hz and a duty ratio of 0.4. Be sure to indicate the vertical levels and the horizontal (time) values carefully.
Problem 3 (10 points)
Consider the digital circuit shown below.
(a) Determine the truth table for the circuit with inputs x, y and output w. Also determine the truth table columns for intermediate variables p, q and r.
(b) Determine w as a function of x and y.

\begin{table}[h]
\centering
\begin{tabular}{c|c|c|c|c|c}
x & y & p & q & r & w \\
\hline
0 & 0 & & & & 0 \\
0 & 1 & & & & 1 \\
1 & 0 & & & & 0 \\
1 & 1 & & & & 1 \\
\end{tabular}
\end{table}
Problem 4 (5 points)
Given the logical function \(w = [\text{xyz}' + (x'y)' + (x+z)']' \), design a logic circuit with inputs \(x, y, z \) and output \(w \). **Hint:** start working with the innermost parentheses first.

Problem 5 (5 points)
Given the logical function \(w = [\text{xyz}' + x(y' + z') + y(x+z)']' \), design a logic circuit with inputs \(x, y, z \) and output \(w \). **Hint:** start working with the innermost parentheses first.
Problem 6 (6 points)
Consider the truth table shown below. Determine a logical function for w in terms of x, y and z using the sum-of-products procedure.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Problem 7 (4 pts) Sketch the voltage $v_s(t) = -2 + 4 \cos(2\pi t)$ V for three cycles. Label the x- and y-axes and use proper units. Be sure to identify the period, frequency, etc.