Linear Regulators: Fundamentals and Compensation

Vahe Caliskan, Sc.D.
Senior Technical Expert
Motorola Automotive
Government & Enterprise Mobility Solutions

February 15, 2012
1 Introduction

2 Review of Linear Regulator Topologies

3 Transfer Functions

4 Poles & Zeros

5 Bode Magnitude & Phase Plots
1. Introduction

2. Review of Linear Regulator Topologies

3. Transfer Functions

4. Poles & Zeros

5. Bode Magnitude & Phase Plots
Introduction to Seminar Series

Goals of the Seminar Series

- Provide an overview of power conversion techniques
 Power supplies are common subsystems in most of our products

- Present follow-up seminars in related areas
 → switching regulator topologies/compensation, simulation

- Offer refresher seminars in fundamental areas
 → mathematical modeling, circuit analysis, control design
Previous Seminars

Overview of Linear and Switching Power Supplies

- Two seminars were held on September 15 and October 17, 2005, a total of 83 people attended these seminars.
- Follow-up seminars in linear and switching regulators were requested.

http://compass.mot.com/go/powerconversion
Outline

1. Introduction

2. Review of Linear Regulator Topologies

3. Transfer Functions

4. Poles & Zeros

5. Bode Magnitude & Phase Plots
Three-terminal devices – input, output, common (ground)

Linear regulators may be classified by their series (pass) transistor
- Series element may consist of bipolar or field-effect transistors

Bipolar outputs → Darlington NPN, PNP, NPN-PNP

Majority of regulators use bipolars (FET-based regulators $)

Series transistor structure determines V_{dropout}, I_{bias}, I_q, P_{diss}

Frequency compensation and protection circuitry also important

V_{dropout} minimum input-output voltage difference to stay in regulation

I_{bias} bias current for the pass transistor

I_q regulator quiescent current of which I_{bias} is one component

P_{diss} regulator power dissipation
Linear Regulator – Typical Usage

- TPS76433 – 3.3V, 150mA, PMOS LDO linear regulator
- Low output voltage noise ($50\mu V$), Low power ($I_q = 140\mu A$)
- $0.01\mu F$ bypass capacitor filters reference voltage
- Capacitor ESR important for stability (not too high, not too low)
- Current limit (1A), thermal protection (165°C shutdown)
NPN Regulator

Characteristics
- NPN Darlington pass
- PNP driver
- Used in 78xx series
- \(I_{bias} \approx \frac{I_{load}}{\beta^3} \)
- Smallest chip area
- Small comp. capacitor
- Least expensive
- \(V_{do} = 2V_{BE} + V_{sat} \approx 2.0V \)
- No reverse battery protection
PNP Low Dropout (LDO) Regulator

Characteristics

- PNP pass
- NPN or EA direct drive
- \(V_{do} = V_{sat} \approx 600\text{mV} \)
- Inherent reverse battery protection
- \(I_{bias} \approx I_{load}/\beta_{pnp} \)
- Large chip area
- Large comp. capacitor
- More expensive
Composite (Quasi-LDO) Regulator

Composite Regulator

Characteristics

- NPN pass
- PNP driver
- $V_{do} = V_{BE} + V_{sat} \approx 1.3V$
- $I_{bias} \approx I_{load}/\beta^2$
- Compromise between NPN and PNP
- Larger chip area than NPN
- Large comp. capacitor
- No reverse battery protection
PMOS LDO Regulator

Characteristics

- PMOS pass
- NPN driver
- Very low V_{do} ($\approx 50\text{mV}$)
- V_{do} controlled by $R_{ds,\text{on}}$
- Very low I_{bias}
- Can't enhance FET for $V_{in} < 3V$
NMOS LDO Regulator

Characteristics

- NMOS pass
- Direct drive
- Very low V_{do}
- Lower $R_{ds, on}$ than PMOS
- Lower output impedance
- Smaller external caps
- Needs $V_{bias} > V_{out}$ to enhance FET
<table>
<thead>
<tr>
<th>Topology</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPN</td>
<td>smallest die size</td>
<td>large dropout voltage</td>
</tr>
<tr>
<td></td>
<td>fastest transient response</td>
<td>no rev. batt. protection</td>
</tr>
<tr>
<td></td>
<td>smallest comp. capacitor</td>
<td></td>
</tr>
<tr>
<td>PNP LDO</td>
<td>low dropout voltage</td>
<td>high quiescent current</td>
</tr>
<tr>
<td></td>
<td>rev. battery protection</td>
<td>large comp. capacitor</td>
</tr>
<tr>
<td></td>
<td>large comp. capacitor</td>
<td>large die size</td>
</tr>
<tr>
<td>NPN/PNP</td>
<td>moderate dropout voltage</td>
<td>large comp. capacitor</td>
</tr>
<tr>
<td></td>
<td>lower I_q than PNP</td>
<td>no rev. battery protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMOS LDO</td>
<td>very low V_{do} and I_{bias}</td>
<td>need $V_{in} > 3V$</td>
</tr>
<tr>
<td></td>
<td>$V_{do} \propto R_{ds, on}$</td>
<td></td>
</tr>
<tr>
<td>NMOS LDO</td>
<td>very low V_{do}, low R_{out}</td>
<td>need $V_{bias} > V_{out}$</td>
</tr>
<tr>
<td></td>
<td>lower $R_{ds, on}$ than PMOS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>smaller external capacitors</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Review of Linear Regulator Topologies
3. Transfer Functions
4. Poles & Zeros
5. Bode Magnitude & Phase Plots
Transfer function is a ratio of response to excitation \(\frac{\text{response}}{\text{excitation}} \).

Use of \(\frac{\text{output}}{\text{input}} \) for TFs is vague (E and R can be at same port).

Expressed in frequency domain using Laplace or Fourier Transforms.

Voltage Gain (V/V), \(\omega_c = \frac{1}{RC} \) = corner frequency

\[
A(s) = \frac{v_{out}(s)}{v_{in}(s)} = \frac{\frac{1}{sC}}{R + \frac{1}{sC}} = \frac{1}{1 + sRC} = \frac{1}{1 + \frac{s}{\omega_c}}
\]

Input Impedance (Ω)

\[
Z_{in}(s) = \frac{v_{in}(s)}{i_{in}(s)} = R + \frac{1}{sC} = R\frac{1 + sRC}{sRC} = R\frac{1 + \frac{s}{\omega_c}}{\omega_c}
\]
Poles & Zeros

- Transfer function is a ratio of two polynomials $A(s) = \frac{\text{num}(s)}{\text{den}(s)}$

- **Poles** are values of s that make $\text{den}(s) = 0$
 - Also called roots or natural frequencies
 - Response to initial conditions, independent of applied excitation
 - Determine stability

- **Zeros** are values of s that make $\text{num}(s) = 0$
 - Also called transmission zeros
 - No impact on stability
 - Determine undershoot, transient response (with poles)

- Evaluate TF by letting $s = j\omega$ and take complex magnitude and phase

\[
A(j\omega) = \frac{1}{1 + j\frac{\omega}{\omega_c}} = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^2}} \angle -\tan^{-1}\left(\frac{\omega}{\omega_c}\right)
\]

- **magnitude**
- **phase**
Loop gain $T(s)$ is the product of forward and feedback gains

Closed-loop system can be unstable even if $T(s)$, $G(s)$ have no RHP poles

Undesired ringing and overshoot can occur even in stable systems

Crossover frequency ω_c is where $\|T(j\omega_c)\| = 1 \Rightarrow 0$ dB

Phase margin $\phi_m = 180^\circ + \angle T(j\omega_c)$

If $\phi_m > 0^\circ \Rightarrow$ feedback system stable (no RHP poles)

Small $\phi_m \Rightarrow$ high-Q resonant poles near $\omega_c \Rightarrow$ overshoot & ringing

We normally need $\phi_m \geq 45^\circ$ in practical feedback systems

If $\phi_m < 0^\circ \Rightarrow$ feedback system unstable (at least one RHP pole)
1st Order Poles and Zeros

1st Order Pole: \(\frac{1}{1+s/\omega_c} \)

- 3dB
- -20dB/dec
- 5.7°
- -45°/dec
- 5.7°

1st Order Zero: 1 + \(s/\omega_c \)

- +20dB/dec
- +45°/dec
- 5.7°
Outline

1. Introduction
2. Review of Linear Regulator Topologies
3. Transfer Functions
4. Poles & Zeros
5. Bode Magnitude & Phase Plots
Bode Plot (magnitude & phase)

Frequency (rad/sec)

Magnitude (dB)

Phase (deg)

-20dB/dec
LDO System (3.3V/100mA)

\[V_{out} = (1 + \frac{R_1}{R_2}) V_{ref} = (1 + \frac{0.64R}{0.36R}) 1.192V = 3.31V \]

\[R_L = \frac{V_{out}}{I_{load}} = \frac{3.3V}{100mA} = 33\Omega \]
LDO System Model Simple

\[G_{pmos} v_{gs} = (g_m r_{ds}) v_{gs} \]

\[Z_o(s) \approx (R_c + \frac{1}{sC_o}) \parallel \frac{1}{sC_b} \parallel R_L \]

\[G_{ea} v_s = G_{ea} (v_s - V_{ref}) \rightarrow 0 \]
LDO System Loop Gain

\[G_{oa}(s) \]

\[-G_{pmos} \]

\[G(s) \]

\[\frac{1}{1+sr_{oa}C_{gs}} \]

\[-g_m r_{ds} \]

\[\frac{Z_o(s)}{r_{ds} + Z_o(s)} \]

\[G_{fb} \]

\[\frac{R_2}{R_1 + R_2} \]

\[V_{ref} = 0 \]
LDO System Loop Gain (redrawn)

\[G_{oa}(s) = \frac{1}{1+sr_{oa}C_{gs}} \]

PMOS Voltage Gain

\[G_{pmos} \]

Load & Filter

\[\frac{Z_o(s)}{r_{ds}+Z_o(s)} \]

\[V_{ref} = 0 \]

Error Amp Gain

\[G_{ea} \]

Frequency Response

\[V_{gs} \]

\[G(s) \]

Feedback Divider

\[\frac{R_2}{R_1+R_2} \]

\[G_{fb} \]

\[T(s) \]

\[V_{out} \]
Loop Gain Calculation

\[G(s) \approx G_0 \frac{1 + s/\omega_z}{(1 + s/\omega_o)(1 + s/\omega_b)} \]

with \(G_0 = \frac{R_L}{r_{ds} + R_L} \)

\[T(s) \approx G_{pmos} G_0 G_{fb} G_{ea} \frac{1 + s/\omega_z}{(1 + s/\omega_o)(1 + s/\omega_b)(1 + s/\omega_{oa})} \]

- \(T_0 = G_{pmos} G_0 G_{fb} G_{ea} \Rightarrow \) Low-frequency loop gain
- \(\omega_o \approx 1/[C_o(R_c + r_{ds}||R_L)] \Rightarrow \) Load pole
- \(\omega_{oa} = 1/[R_{oa}C_{gs}] \Rightarrow \) Pole due to opamp-PMOS interaction
- \(\omega_b \approx 1/[C_b R_c (r_{ds}||R_L)/(R_c + (r_{ds}||R_L))] \Rightarrow \) Pole due to bypass cap
- \(\omega_z = 1/[R_c C_o] \Rightarrow \) Zero due to ESR
Parameters, Gains, Pole/Zero Locations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{out}</td>
<td>3.3V</td>
</tr>
<tr>
<td>R_L</td>
<td>33Ω</td>
</tr>
<tr>
<td>R_c</td>
<td>2Ω</td>
</tr>
<tr>
<td>g_m</td>
<td>123mA/V</td>
</tr>
<tr>
<td>r_{ds}</td>
<td>65Ω</td>
</tr>
<tr>
<td>R_1</td>
<td>64kΩ</td>
</tr>
<tr>
<td>I_{load}</td>
<td>100mA</td>
</tr>
<tr>
<td>R_{oa}</td>
<td>300kΩ</td>
</tr>
<tr>
<td>C_o</td>
<td>10µF</td>
</tr>
<tr>
<td>C_b</td>
<td>0.5µF</td>
</tr>
<tr>
<td>C_{gs}</td>
<td>200pF</td>
</tr>
<tr>
<td>R_2</td>
<td>36kΩ</td>
</tr>
</tbody>
</table>

Transfer Functions

<table>
<thead>
<tr>
<th>G_{pmos}</th>
<th>$g_m r_{ds}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{fb}</td>
<td>$R_1 / (R_1 + R_2)$</td>
</tr>
<tr>
<td>G_o</td>
<td>$R_L / (r_{ds} + R_L)$</td>
</tr>
<tr>
<td>G_{ea}</td>
<td>N/A</td>
</tr>
<tr>
<td>T_0</td>
<td>$G_{pmos} G_0 G_{fb} G_{ea}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_o</td>
<td>$1 / [C_o (R_c + r_{ds}</td>
</tr>
<tr>
<td>ω_{oa}</td>
<td>$1 / [R_{oa} C_{gs}]$</td>
</tr>
<tr>
<td>ω_b</td>
<td>$1 / [C_b R_c</td>
</tr>
<tr>
<td>ω_z</td>
<td>$1 / [R_c C_o]$</td>
</tr>
</tbody>
</table>

- $G_{pmos} \Rightarrow 18.1\text{dB}$
- $G_{fb} \Rightarrow -8.9\text{dB}$
- $G_o \Rightarrow -9.45\text{dB}$
- $G_{ea} \Rightarrow 35\text{dB}$
- $T_0 \Rightarrow 34.7\text{dB}$

- $\omega_o \Rightarrow 667\text{Hz}$
- $\omega_{oa} \Rightarrow 2.65\text{kHz}$
- $\omega_b \Rightarrow 172\text{kHz}$
- $\omega_z \Rightarrow 8\text{kHz}$
Conclusion

- item 1
- item 2
- item 3
- item 4
- item 5
References

Everett Rogers, “Stability Analysis of low-dropout linear regulators with a PMOS pass element”
Texas Instruments Analog Applications Journal, Dallas, TX, August 1999.

Bang S. Lee, “Understanding the stable range of equivalent series resistance of an LDO regulator”
Texas Instruments Analog Applications Journal, Dallas, TX, November 1999.

Kieran O’Malley, “Compensation for Linear Regulators”

Kieran O’Malley, “Linear Regulator Output Structures”

Todd Schiff, “Stability in High Speed Linear LDO Regulators”
Sources of information on the web

- http://www.infineon.com — Infineon Technologies
- http://www.linear.com — Linear Technology