1) Find the voltage across the resistance \(V_R \)
All resistors are 10\(\Omega \).

\[
\begin{align*}
\text{(a)} & \quad + \frac{1}{2}A & \quad \text{\(V_R \)} & \quad + \frac{3A}{2} \quad \text{\(\frac{-V_R}{3} \)} & \quad \text{\(\frac{-V_R}{3} \)} & \quad \text{(b)} \quad -3A \quad \text{\(\frac{-V_R}{3} \)} & \quad 5A \quad \text{\(\frac{-V_R}{3} \)} & \quad \text{\(\frac{-4A}{3} \)} & \quad \text{(c)} \quad \text{(d)}
\end{align*}
\]

2) Find the current through the resistance \(i_R \)
All resistors are 5\(\Omega \).

\[
\begin{align*}
\text{(a)} & \quad + \frac{1}{2}i_R & \quad \text{\(2V \)} & \quad -3V & \quad + \frac{1}{4}i_R & \quad + \frac{1}{5}i_R & \quad \text{(b)} \quad \text{\(-3V \)} & \quad 4V \quad \text{\(\frac{-V_R}{3} \)} & \quad \text{(c)} \quad \text{(d)}
\end{align*}
\]

3) Find the power dissipation \(P_{\text{diss},R} \) in each resistor of Problem 1.

4) Find the power dissipation \(P_{\text{diss},R} \) in each resistor of Problem 2.

5) If a 25\(\Omega \) resistor dissipates 18 W of power:
(a) determine its voltages \(V_R \),
(b) determine its currents \(i_R \),
(c) determine how many \((V_R, i_R) \) combinations from (a) & (b) are valid.
A circuit with four elements labeled A, B, C, D is shown. Write the algebraic relation of voltages with polarities as shown.

A cutaway portion of a circuit with elements A, B, C, D is shown. Find the algebraic relationship for the currents with directions shown.

\[i_A = 5 \text{A} \]
\[v_A = 20 \text{V} \]
\[v_B = _ \text{V} \]
\[v_D = _ \text{V} \]
\[v_E = 2 \text{A} \]
\[v_E = 8 \text{V} \]

\[v_B, v_D \]
\[i_B, i_C, i_D \]

Determine \(v_B, v_D \) and \(i_B, i_C, i_D \) voltages and currents.

If \(I_2 = 2 \text{A} \), find \(V_s \)

If \(V_2 = 18 \text{V} \), find \(I_s \)