For the following problems, assume that the opamp is ideal.
Here are some tips and assumptions:
1. $V_+ = V_-$, 2. $I_+ = 0$, 3. $I_- = 0$

Writing KCL equations will yield most results. Do not write the KCL at the ground terminals. Also do not write KCL at the opamp output (since I_{out} is not known).

Problem 1
Determine the voltage gain $V_{\text{out}}/V_{\text{in}}$ for the following circuits.

(a)
![Circuit (a)](image-a)

(b)
![Circuit (b)](image-b)

(c)
![Circuit (c)](image-c)

(d)
![Circuit (d)](image-d)
Problem 2

Determine the output voltage V_{out} as a function of input voltages V_{in1} & V_{in2} for the following circuits:

(a)

(b)

Problem 3

For the circuit shown below, determine the following voltage gains: (a) $\frac{V_{out1}}{V_{in}}$, (b) $\frac{V_{out2}}{V_{out1}}$, (c) $\frac{V_{out2}}{V_{in}}$

Problem 4

Synthesize (design) op amp circuits with component values to implement the following functions. Note that the circuit has a single output (V_{out}) but may have one input (V_{in}) as in (a)-(c) or two inputs (V_{in1} & V_{in2}) for (d)-(f).

(a) $V_{out} = -3V_{in}$
(b) $V_{out} = 4V_{in}$
(c) $V_{out} = \frac{1}{2}V_{in}$
(d) $V_{out} = -5V_{in1} - 2V_{in2}$
(e) $V_{out} = V_{in1} - V_{in2}$
(f) $V_{out} = 3V_{in1} - 4V_{in2}$

Notes:

1. Some of these designs require multiple opamps.
2. There may be multiple ways of arriving at similar results.