1. Convert the following complex numbers from rectangular form to polar form.
 (a) $3 - j4$
 (b) $-5 - j11$
 (c) $-10 + j10$
 (d) $5 + j10$

2. Simplify the following expressions, then convert the result to polar form.
 (a) $(3 - j4)(-5 - j11)$
 (b) $\frac{-10 + j10}{5 + j10}$

3. Convert the following complex numbers from polar form to rectangular form.
 (a) $10 e^{j\frac{\pi}{3}}$
 (b) $-5 e^{j30^\circ}$
 (c) $-2 e^{-j\frac{\pi}{2}}$
 (d) $4 e^{j135^\circ}$

4. Simplify the following expressions, then convert the result to rectangular form.
 (a) $(10 e^{j\frac{\pi}{3}})(-5 e^{j30^\circ})$
 (b) $\frac{-2 e^{-j\frac{\pi}{2}}}{4 e^{j135^\circ}}$

5. Find the total complex impedance (in Ω) for the following circuit elements or combinations at an angular frequency $\omega = 1000 \text{ rad/s}$.
 (a) 100Ω resistor
 (b) 10mH inductor
 (c) 100μF capacitor
 (d) 200Ω resistor in series with a 5mH inductor
 (e) 500Ω resistor in series with a 50μF capacitor
 (f) 1kΩ resistor in series with a 2mH inductor in series with a 20μF capacitor
 (g) 200Ω resistor in parallel with a 5mH inductor
 (h) 10mH inductor in parallel with a 100μF capacitor

6. Given the following circuit with complex impedances, find the complex current \vec{I} and the complex voltage \vec{V}.

![Circuit Diagram]

$12\angle45^\circ \text{ V}$

4Ω

\vec{I}

\vec{V}
7. Find the complex current \bar{I} using current division.

$$
\begin{align*}
10 \angle 60^\circ \text{ A} & \quad 1\Omega \\
\downarrow & \quad -j\sqrt{3} \Omega \\
\bar{I} &
\end{align*}
$$

8. Find the complex current \bar{I} and complex voltage \bar{V}, then find the corresponding time-domain current $i(t)$ and voltage $v(t)$. Hint: Start by converting the circuit shown below to its phasor equivalent to determine \bar{I} and \bar{V}.

$$
\begin{align*}
200 \cos(1000t + 30^\circ) \text{ V} & \quad 100\Omega \\
\downarrow & \quad 0.1\text{ H} \\
\bar{V} & \quad \bar{I}
\end{align*}
$$