Trigonometric Identities
\[
\cos(-\theta) = \cos(\theta) \quad \sin(-\theta) = -\sin(\theta) \quad \sin(\theta) = \cos \left(\theta - \frac{\pi}{2} \right)
\]

Cosines and Sines of common angles

<table>
<thead>
<tr>
<th>(\theta) (radians)</th>
<th>(\theta) (degrees)</th>
<th>(\cos \theta)</th>
<th>(\sin \theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\pi/6)</td>
<td>30°</td>
<td>(\sqrt{3}/2)</td>
<td>(1/2)</td>
</tr>
<tr>
<td>(\pi/4)</td>
<td>45°</td>
<td>(\sqrt{2}/2)</td>
<td>(\sqrt{2}/2)</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>60°</td>
<td>(1/2)</td>
<td>(\sqrt{3}/2)</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>90°</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Euler’s Formula
\[
e^{j\theta} = \cos \theta + j \sin \theta \quad e^{-j\theta} = \cos \theta - j \sin \theta
\]

Complex Numbers
- rectangular form: \(z = a + j b \) \(a \) is the real part of \(z \), \(b \) is the imaginary part of \(z \)
- polar form: \(z = A e^{j\theta} \) \(A \) is the magnitude of \(z \), \(\theta \) is the angle of \(z \)
- rectangular to polar: \(z = a + j b \rightarrow \sqrt{a^2 + b^2} e^{j \tan^{-1}(b/a)} = A e^{j\theta} \)
- polar to rectangular: \(z = A e^{j\theta} \rightarrow A \cos \theta + j A \sin \theta = a + j b \)
- complex conjugate: \(z = a + j b \rightarrow z^* = a - j b \)
- complex conjugate: \(z = A e^{j\theta} \rightarrow z^* = A e^{-j\theta} \)

Complex Number Properties
\[
j = \sqrt{-1} = e^{j\pi/2} = e^{-j3\pi/2} \\
j^2 = -1 = e^{j\pi} = e^{-j\pi} \\
j^3 = -j = e^{j3\pi/2} = e^{-j\pi/2} \\
j^4 = 1 = e^{j0} = e^{j2\pi} = e^{-j2\pi}
\]

Impedances
\(R \rightarrow Z_R = R, \quad L \rightarrow Z_L = j\omega L, \quad C \rightarrow Z_C = 1/(j\omega C) = -j/(\omega C) \)

Series: \(R_1 + R_2 \) or \(Z_1 + Z_2 \), Parallel: \(R_1||R_2 = \frac{R_1 R_2}{R_1 + R_2} \) or \(Z_1||Z_2 = \frac{Z_1 Z_2}{Z_1 + Z_2} \)

Ohm’s Law, Voltage Division, Current Division
Ohm’s Law — Assuming passive sign convention: \(V = IR \) or \(V = IZ \)

Voltage Division — For \(R_1 \) and \(R_2 \) in series with \(V_s \): \(V_1 = \frac{R_1}{R_1 + R_2} V_s, \quad V_2 = \frac{R_2}{R_1 + R_2} V_s \)

Current Division — For \(R_1 \) and \(R_2 \) in parallel with \(I_s \): \(I_1 = \frac{R_2}{R_1 + R_2} I_s, \quad I_2 = \frac{R_1}{R_1 + R_2} I_s \)

Voltage Division — For \(Z_1 \) and \(Z_2 \) in series with \(V_s \): \(\tilde{V}_1 = \frac{Z_1}{Z_1 + Z_2} \tilde{V}_s, \quad \tilde{V}_2 = \frac{Z_2}{Z_1 + Z_2} \tilde{V}_s \)

Current Division — For \(Z_1 \) and \(Z_2 \) in parallel with \(I_s \): \(\tilde{I}_1 = \frac{Z_2}{Z_1 + Z_2} \tilde{I}_s, \quad \tilde{I}_2 = \frac{Z_1}{Z_1 + Z_2} \tilde{I}_s \)
Opamp 1 (5 points)
Consider the following circuit where the opamp is ideal. Recall that for an ideal opamp, $V_+ = V_-$, $I_+ = 0\, \text{A}$ and $I_- = 0\, \text{A}$.

Hint: Start by determining V_- then use KVL, KCL and Ohm’s Law.

![Circuit Diagram]

(a) Find the current I_{R1}.

(b) Find the current I_{R2}.

(c) Find the output voltage V_{out}.

(d) Find the power dissipation $P_{diss, R1}$ in resistor R_1.

(e) Find the power dissipation $P_{diss, R2}$ in resistor R_2.

Opamp 2 (5 points)
Consider the following circuit where the opamp is ideal. Recall that for an ideal opamp, $V_+ = V_-$, $I_+ = 0\, \text{A}$ and $I_- = 0\, \text{A}$.

Hint: Start by determining V_- then use KVL, KCL and Ohm’s Law.

![Circuit Diagram]

(a) Find the current I_{R1}.

(b) Find the current I_{R2}.

(c) Find the output voltage V_{out}.

(d) Find the power dissipation $P_{diss, R1}$ in resistor R_1.

(e) Find the power dissipation $P_{diss, R2}$ in resistor R_2.
Truth Tables and Logic Functions (6 points)
Consider the following logic circuit with inputs x and y and output z.
(a) (4 points) Determine the truth table for the circuit.
(b) (2 points) Write z as a logical function of x and y.

Logic Function Implementation (4 points)
Given the logical function $w = [xyz + (xy)' + (x'z)']'$, synthesize a logic circuit with inputs x, y, z and output w. **Hint:** start working with the innermost parentheses first.
Equivalent Resistance Calculation (6 points, 3 points each)
Find the equivalent resistance R_{eq} for each of the circuits shown below.

Logic Function Implementation (4 points)
Given the logical function $w = \left[x'y'z' + x(yz)' + (x'y)'z \right]'$, synthesize a logic circuit with inputs x, y, z and output w. *Hint:* start working with the innermost parentheses first and be careful with how you implement $x(yz)'$ and $(x'y)'z$.
Complex Impedance Calculation (5 points)
Suppose you are given a 50 Ω resistor and a 0.2 H inductor operating at ω = 1000 rad/s.

(a) Find the impedance Z_R of the resistor.

(b) Find the impedance Z_L of the inductor.

(c) Find the parallel combination Z_p of the resistor and inductor.

(d) Simplify and express Z_p in polar form as $A\angle\theta$.

(e) Simplify and express Z_p in rectangular form as $a + jb$.

LED Current Limit Calculation (5 points)
In the circuit shown below, the resistor R_s is used to limit the current through the LED. When the LED is on (conducting), its voltage is $V_{LED} = 2V$.

(a) Determine the value of R_s so that the LED current $I_{LED} = 2mA$ when it is on.

(b) Find the power dissipation $P_{diss,Rs}$ in resistor R_s when the LED is on.

(c) Find the power dissipation $P_{diss,LED}$ in the LED when it is on.

(d) Determine the power supplied by the voltage source when the LED is on.
Extra Workspace