Two-Port Networks

Gyrator (with gyration resistance r): $V_1 = -rI_2$, $V_2 = rI_1$
Gyrator (with gyration conductance g): $I_1 = gV_2$, $I_2 = -gV_1$
Transformer ($n:1$, step down): $V_2 = V_1/n$, $I_2 = -nI_1$
Transformer ($1:n$, step up): $V_2 = nV_1$, $I_2 = -I_1/n$
OTA: $I_{out} = g_m(V_+ - V_-)$, $I_+ = 0, I_- = 0, V_+ \neq V_-$

$$Y = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \quad Z = \begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix}$$

$I_1 = y_{11}V_1 + y_{12}V_2$
$I_2 = y_{21}V_1 + y_{22}V_2$

$V_1 = z_{11}I_1 + z_{12}I_2$
$V_2 = z_{21}I_1 + z_{22}I_2$

$Z = Y^{-1}$

$$H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \quad G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$$

$V_1 = h_{11}I_1 + h_{12}V_2$
$I_2 = h_{21}I_1 + h_{22}V_2$

$I_1 = g_{11}V_1 + g_{12}I_2$
$V_2 = g_{21}V_1 + g_{22}I_2$

$G = H^{-1}$

$$T = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$V_1 = AV_2 - BI_2$
$I_1 = CV_2 - DI_2$

$T_{series} = \begin{bmatrix} 1 & Z_{series} \\ 0 & 1 \end{bmatrix} \quad T_{parallel} = \begin{bmatrix} 1 & 0 \\ Y_{parallel} & 1 \end{bmatrix}$
Problem 1 (10 points)

(a) Determine the transmission \((T)\) matrix model for the ideal 1 : \(n\) step-up transformer shown below.

(b) Determine the transmission \((T)\) matrix model for the ideal \(n : 1\) step-down transformer shown below.
(c) Determine the transmission (T) matrix model for the cascade connection of an ideal $n_1 : 1$ step-down transformer and an ideal $1 : n_2$ step-up transformer shown below.
Problem 2 (10 points)
Find V_{out}/V_{in} and Z_{out} for the following network.
Problem 2 (continued)
Problem 3 (10 points)
(a) Determine the transmission (T) matrix for the ideal gyrator (with gyration resistance r) shown below.

(b) Determine the transmission (T) matrix model for the cascade connection of an ideal gyrators (with gyration resistances r_1 and r_2) shown below.
(c) Show that two gyrators with a capacitor C between them as shown below can be used to emulate a series (floating inductor) if gyration resistances are chosen to be equal ($r_1 = r_2 = r$). What is the value of the emulated inductance?