Problem 1 (10 points)
Find the voltage gain V_{out}/V_{in} for the following circuit.
Assume that the opamp is ideal.

\[V_{out}/V_{in} = \]
Problem 2 (10 points)
Find the output voltage V_{out} as a function of input voltage V_{in} and input current I_{in}.
Assume that the opamp is ideal.
Problem 2 (continued)

\[V_{out} = f(V_{in}, I_{in}) = \]
Problem 3 (10 points)
Determine I_1, V_2 and the state of the diodes (on/off).

Use the 0.7V constant-voltage drop model for the diodes. Verify diode assumptions (provide v_D and i_D).
Problem 3 (continued)

\[D_1 = \quad D_2 = \quad D_3 = \quad I_1 = \quad V_2 = \quad \]
Problem 4 (15 points)
(a) Determine $v_{out}(t)$ if $v_{in}(t) = 5\sin(10\pi t)$ V.
(b) Sketch two periods of $v_{in}(t)$ and $v_{out}(t)$ to illustrate the circuit operation. Make sure you label the axes.
(c) Sketch the v_{out} vs. v_{in} transfer characteristics. Make sure you label the axes.

Use the 0.7V constant-voltage drop model for the diode. Verify diode assumptions (provide v_D and i_D).
Problem 4 (continued)