Acknowledgement

- Adapted from Chapter 4 slides of the text, by A. Grama w/ a few changes, augmentations and corrections
Topic Overview

- One-to-All Broadcast and All-to-One Reduction
- All-to-All Broadcast and Reduction
- All-Reduce and Prefix-Sum Operations
- Scatter and Gather
- All-to-All Personalized Communication
- Circular Shift
- Improving the Speed of Some Communication Operations
Basic Communication Operations: Introduction

- Many interactions in practical parallel programs occur in well-defined patterns involving groups of processors.
- Efficient implementations of these operations can improve performance, reduce development effort and cost, and improve software quality.
- Efficient implementations must leverage underlying architecture. For this reason, we refer to specific architectures here.
- We select a descriptive set of architectures to illustrate the process of algorithm design.
Basic Communication Operations: Introduction

• Group communication operations are built using point-to-point messaging primitives.
• Recall from our discussion of architectures that communicating a message of size m over an uncongested network takes time $t_s + mt_w$.
• We use this as the basis for our analyses. Where necessary, we take congestion into account explicitly by scaling the t_w term.
• We assume that the network is bidirectional and that communication is single-ported.
One-to-All Broadcast and All-to-One Reduction

- One processor has a piece of data (of size m) it needs to send to everyone.
- The dual of one-to-all broadcast is all-to-one reduction.
- In all-to-one reduction, each processor has m units of data. These data items must be combined piece-wise (using some associative operator, such as addition or min), and the result made available at a target processor.
One-to-All Broadcast and All-to-One Reduction

One-to-all broadcast and all-to-one reduction among processors.
One-to-All Broadcast and All-to-One Reduction on Rings

- Simplest way is to send $p-1$ messages from the source to the other $p-1$ processors - this is not very efficient.
- Use recursive doubling: source sends a message to a selected processor. We now have two independent problems derived over halves of machines.
- Reduction can be performed in an identical fashion by inverting the process.
One-to-All Broadcast

- One-to-all broadcast on an eight-node ring. Node 0 is the source of the broadcast. Each message transfer step is shown by a numbered, dotted arrow from the source of the message to its destination. The number on an arrow indicates the time step during which the message is transferred.

- Algorithmic Approach: *Recursive doubling w/ recursive splitting*: # of processors having the data doubles every iteration/round and the processor getting the data from another processor is the “mirror processor” in the other half of the current processor space (thus splitting this space in two). The current processor space halves every round.

- Time = Theta(P-1)

- An easier algorithm: Send to neighbor, and then neighbor and source take care of each half of the ring (now a linear array) w/ either above algo. or just sequentially sending the data according to the linear connections. Time = Theta(1 + P/2 – 1) = Theta(P/2)
All-to-One Reduction

- Reduction on an eight-node ring with node 0 as the destination of the reduction.
- Algorithm: Recursive halving w/ recursive expansion in which the # of processors in which the reduction need to be performed halve every iteration/round, and the processor space represented by each partial result locally doubles/aggregates every round.
- Time = Theta(P-1)
- A similar algorithm as one-to-all bcast, can split the ring in two between root and a neighbor Pi, perform reduction in each half of linear array containing root and Pi, resp., and then Pi sends its data to root. Time = Theta(P/2 - 1 + 1) = Theta(P/2)
Broadcast and Reduction: Example

Consider the problem of multiplying a matrix with a vector.

- The $n \times n$ matrix is assigned to an $n \times n$ (virtual) processor grid. The vector is assumed to be on the first row of processors.
- The first step of the product requires a one-to-all broadcast of the vector element along the corresponding column of processors. This can be done concurrently for all n columns.
- The processors compute local product of the vector element and the local matrix entry.
- In the final step, the results of these products are accumulated to the first row using n concurrent all-to-one reduction operations along the rows (using the sum operation).
One-to-all broadcast and all-to-one reduction in the multiplication of a 4×4 matrix with a 4×1 vector.
Broadcast and Reduction on a Mesh

• We can view each row and column of a square mesh of p nodes as a linear array of \sqrt{p} nodes.
• Broadcast and reduction operations can be performed in two steps - the first step does the operation along a row and the second step along each column concurrently.
• This process generalizes to higher dimensions as well.
Broadcast and Reduction on a Mesh: Example

One-to-all broadcast on a 16-node mesh.
Broadcast and Reduction on a Hypercube

- A hypercube with 2^d nodes can be regarded as a d-dimensional mesh with two nodes in each dimension.
- The mesh algorithm can be generalized to a hypercube and the operation is carried out in d ($=\log p$) steps.
One-to-all broadcast on a three-dimensional hypercube. The binary representations of node labels are shown in parentheses.
Broadcast and Reduction on a Balanced Binary Tree

- Consider a binary tree in which processors are (logically) at the leaves and internal nodes are routing nodes.
- Assume that source processor is the root of this tree. In the first step, the source sends the data to the right child (assuming the source is also the left child). The problem has now been decomposed into two problems with half the number of processors.
Broadcast and Reduction on a Balanced **Indirect** Binary Tree

- One-to-all broadcast on an eight-node **indirect** tree
- Algorithm: Recursive doubling w/ recursive splitting
- Time = \(\sum_{i=1}^{\log P} \left(\frac{2\log P}{2^{i-1}} \right) = 2\log P \left[1 - \frac{1/2}{\log P} \right] / [1-1/2] \)
 = \(4\log P \frac{(P-1)}{P} = \Theta(4 \log P) \).
Broadcast and Reduction Algorithms

- All of the algorithms described above are adaptations of the same algorithmic template.
- We illustrate the algorithm for a hypercube, but the algorithm, as has been seen, can be adapted to other architectures.
- The hypercube has 2^d nodes and my_id is the label for a node.
- X is the message to be broadcast, which initially resides at the source node 0.
Broadcast and Reduction Algorithms

1. \textbf{procedure} GENERAL_ONE_TO_ALL_BC(d, my_id, source, X)

2. begin

3. \hspace{1cm} my_virtual_id := my_id XOR source;

4. \hspace{1cm} mask := 2^d - 1;

5. \hspace{1cm} for i := d - 1 \hspace{1cm} downto \hspace{1cm} 0 \hspace{1cm} do \hspace{1cm} /* Outer loop */

6. \hspace{2cm} mask := mask XOR 2^i; \hspace{1cm} /* Set bit i of mask to 0 */

7. \hspace{2cm} if (my_virtual_id AND mask) = 0 \hspace{1cm} then \hspace{1cm} /* I am or will be the source in my current proc. space */

8. \hspace{3cm} if (my_virtual_id AND 2^i) = 0 \hspace{1cm} then

9. \hspace{4cm} virtual_dest := my_virtual_id XOR 2^i;

10. \hspace{4cm} send X to (virtual_dest XOR source);

11. \hspace{3cm} /* Convert virtual_dest to the label of the physical destination */

12. else

13. \hspace{4cm} virtual_source := my_virtual_id XOR 2^i;

14. \hspace{4cm} receive X from (virtual_source XOR source);

15. \hspace{4cm} /* Convert virtual_source to the label of the physical source */

16. endelse;

17. endfor;

18. end GENERAL_ONE_TO_ALL_BC

One-to-all broadcast of a message X from source on a hypercube.
Broadcast and Reduction Algorithms

1. procedure ALL_TO_ONE_REDUCE(d, my_id, m, X, sum)
2. begin
3. for j := 0 to m - 1 do sum[j] := X[j];
4. mask := 0;
5. for i := 0 to d - 1 do
 /* Select nodes whose lower i bits are 0 */
 if (my_id AND mask) = 0 then
 if (my_id AND 2^i) ≠ 0 then
 msg_destination := my_id XOR 2^i;
 send sum to msg_destination;
 else
 msg_source := my_id XOR 2^i;
 receive X from msg_source;
 for j := 0 to m - 1 do
 sum[j] := sum[j] + X[j];
 endelse;
 endfor;
6. mask := mask XOR 2^i; /* Set bit i of mask to 1 */
7. end ALL_TO_ONE_REDUCE

Single-node accumulation on a d-dimensional hypercube. Each node contributes a message X containing m words, and node 0 is the destination.
Time Analysis

- The broadcast or reduction procedure involves $\log p$ point-to-point simple message transfers, each at a time cost of $t_s + t_w m$.
- The total time is therefore given by:

$$T = (t_s + t_w m) \log p.$$
All-to-All Broadcast and Reduction

- Generalization of broadcast in which each processor is the source as well as destination.
- A process sends the same m-word message to every other process, but different processes may broadcast different messages.
All-to-All Broadcast and Reduction

All-to-all broadcast and all-to-all reduction.
All-to-All Broadcast and Reduction on a Ring

- Simplest approach: perform p one-to-all broadcasts. This is not the most efficient way, though.
- Each node first sends to one of its neighbors the data it needs to broadcast.
- In subsequent steps, it forwards the data received from one of its neighbors to its other neighbor.
- The algorithm terminates in $p-1$ steps.
All-to-All Broadcast and Reduction on a Ring

All-to-all broadcast on an eight-node ring.
All-to-All Broadcast and Reduction on a Ring

1. procedure ALL_TO_ALL_BC_RING(my_{id}, my_{msg}, p, result)
2. begin
3. $left := (my_{id} - 1) \mod p$;
4. $right := (my_{id} + 1) \mod p$;
5. $result := my_{msg}$;
6. $msg := result$;
7. for $i := 1$ to $p - 1$ do
8. \hspace{1em} send msg to $right$;
9. \hspace{1em} receive msg from $left$;
10. \hspace{1em} $result := result \cup msg$;
11. endfor;
12. end ALL_TO_ALL_BC_RING

All-to-all broadcast on a p-node ring.
All-to-all Broadcast on a Mesh

- Performed in two phases - in the first phase, each row of the mesh performs an all-to-all broadcast using the procedure for the linear array.
- In this phase, all nodes collect \(\sqrt{p} \) messages corresponding to the \(\sqrt{p} \) nodes of their respective rows. Each node consolidates this information into a single message of size \(m\sqrt{p} \).
- The second communication phase is a columnwise all-to-all broadcast of the consolidated messages.
- The algorithmic approach is: local domain (here dimension, but could be sub-mesh also) broadcast + gathering (union of all msgs recv'd) and broadcast of gathered to next higher local domain (e.g., dimension)
All-to-all broadcast on a 3 x 3 mesh. The groups of nodes communicating with each other in each phase are enclosed by dotted boundaries. By the end of the second phase, all nodes get (0,1,2,3,4,5,6,7) (that is, a message from each node).
All-to-all Broadcast on a Mesh

1. **procedure** ALL_TO_ALL_BC_MESH(*my_id*, *my_msg*, *p*, *result*)
2. **begin**
 /* Communication along rows */
3. *left* := *my_id* − (*my_id* mod √*p*) + (*my_id* − 1)mod√*p*;
4. *right* := *my_id* − (*my_id* mod √*p*) + (*my_id* + 1) mod √*p*;
5. *result* := *my_msg*;
6. *msg* := *result*;
7. **for** *i* := 1 **to** √*p* − 1 **do**
8. **send** *msg* to *right*;
9. **receive** *msg* from *left*;
10. *result* := *result* ∪ *msg*;
11. **endfor**;
12. /* Communication along columns */
13. *up* := (*my_id* − √*p*) mod *p*;
14. *down* := (*my_id* + √*p*) mod *p*;
15. *msg* := *result*;
16. **for** *i* := 1 **to** √*p* − 1 **do**
17. **send** *msg* to *down*;
18. **receive** *msg* from *up*;
19. *result* := *result* ∪ *msg*;
20. **endfor**;
21. **end** ALL_TO_ALL_BC_MESH

- Does not work efficiently, since leftmost proc. in row will recv. a “left” msg. from rightmost proc., which takes Θ(sqrt(*P*)) times; this is repeated sqrt(*P*) times, to yield a row all to all broadcast time of Θ(*m*P). Along the cols, it will take Θ(*m*sqrt(*P*)*P) time, as each msg. size is now *m*sqrt(*P*)
- The time analysis given later of Θ(*m*(P−1)) does not apply to this algorithm.
- How to make it more efficient?
- Break down into: a) right-to-left pipelining followed by (or simultaneously, if full duplex links are there) b) left-to-right pipelining. The row all-to-all broadcast now takes time either Θ(2*m*sqrt(*P*)) or Θ(*m*sqrt(*P*)) time, resp.

All-to-all broadcast on a square mesh of *p* nodes.
All-to-all broadcast on a Hypercube

- Generalization of the mesh algorithm to $\log p$ dimensions.
- Message size doubles at each of the $\log p$ steps.
All-to-all broadcast on a Hypercube

- All-to-all broadcast on an eight-node hypercube
- Algorithmic Approach: Iteratively collect all data in local domain and exchange in next double-sized domain (data collected in the double-sized domain)
procedure ALL_TO_ALL_BC_HCUBE(my_id, my_msg, d, result)
begin
result := my_msg;
for i := 0 to d - 1 do
 partner := my_id XOR 2^i;
 send result to partner;
 receive msg from partner;
 result := result \cup msg;
endfor;
end ALL_TO_ALL_BC_HCUBE

All-to-all broadcast on a d-dimensional hypercube.
All-to-all Reduction

- p simultaneous all-to-one reductions take place, each with a different destination for the result.
- Similar communication pattern to all-to-all broadcast, except in the reverse order.
- On receiving a message, a node must combine it with the local copy of the message that has the same destination as the received message before forwarding the combined message to the next neighbor.
Algorithms and Time Analysis

- On a ring, the time is given by: \((t_s + t_w m)(p-1)\). /* send and reduce \(p-1\) times, each proc. starting w/ the elt. that needs to be reduced at proc. to its left, i.e., proc. \(i\), starts this for the elt. corresp. to proc. \(i-1\), and the \(p-1\) times reduced elt. ends up at proc. \(i-1\), gets reduced a final time there, and the result is then at proc. \(i-1\) */

- On a mesh, the time is given by: \(2(t_s + t_w m \sqrt{p})(\sqrt{p} - 1)\) /* row reduction into \(\sqrt{p}\) elts. in each proc., each for a further reduction on its col. and destined for a proc. in its col. */ + \(2(t_s + t_w m)(\sqrt{p} - 1)\) /* the subsequent col. reduction */ = \(2(2t_s(\sqrt{p} - 1) + t_w m(p-1))\).

- Note: On a 2D torus, the time would be: \(2t_s(\sqrt{p} - 1) + t_w m(p-1)\).

- On a hypercube, the algorithm would be to first (in iter. 1) send all \(P/2\) elts. whose reduction is destined in the other half along a particular dim. (say, dim. 1), these get 1-step reduced, and recursively the same is done in each half w/ the 1-step reduced elts. (i.e., in the next iter, send \(P/4\) reduced elts. to the other half in its half, say, along dim. 2, and so forth). Thus the we have:

\[
T = \sum_{i=1}^{\log p} (t_s + 2^{i-1}t_w m)
\]

\[
= t_s \log p + t_w m(p - 1).
\]
All-to-all broadcast: Notes

- All of the algorithms presented above are asymptotically optimal in message size.
- Why? What would be a lower-bound on the parallel time to deliver all msgs to all processors assuming the best possible parallelization (i.e., for any n/w topology, included a completely connected topology)?

 $\Omega(m(P-1))$ reqd. for any processor to receive $P-1$ msgs. as this receiving is sequentialized

- It is not possible to port algorithms for higher dimensional networks (such as a hypercube) into a ring because this would cause contention.
All-to-all broadcast: Notes

Contention for a channel when the hypercube is mapped onto a ring.
All-Reduce and Prefix-Sum Operations

• In all-reduce, each node starts with a buffer of size m and the final results of the operation are identical buffers of size m on each node that are formed by combining the original p buffers using an associative operator.

• Identical to all-to-one reduction followed by a one-to-all broadcast. This formulation is not the most efficient. Uses the pattern of all-to-all broadcast, instead. The only difference is that message size does not increase here. Time for this operation is on a hypercube $(t_s + t_w m) \log p$. /* seen in earlier notes on reduction operation */

• Different from all-to-all reduction, in which p simultaneous all-to-one reductions take place, each with a different destination for the result.
The Prefix-Sum Operation

- Given p numbers $n_0, n_1, ..., n_{p-1}$ (one on each node), the problem is to compute the sums $s_k = \sum_{i=0}^{k} n_i$ for all k between 0 and $p-1$.
- Initially, n_k resides on the node labeled k, and at the end of the procedure, the same node holds S_k.
The Prefix-Sum Operation

Computing prefix sums on an eight-node hypercube. At each node, square brackets show the local prefix sum accumulated in the result buffer and parentheses enclose the contents of the outgoing message buffer for the next step. \(\text{Time} = (t_s + t_w m)(\log p) \)
The Prefix-Sum Operation

• The operation can be implemented using the all-to-all broadcast kernel.
• We must account for the fact that in prefix sums the node with label k uses information from only the k-node subset whose labels are less than or equal to k.
• This is implemented using an additional result buffer. The content of an incoming message is added to the result buffer only if the message comes from a node with a smaller label than the recipient node.
• The contents of the outgoing message (denoted by parentheses in the figure) are updated with every incoming message.
The Prefix-Sum Operation

1. \textbf{procedure} PREFIX_SUMS_HCUBE(\textit{my_id}, \textit{my_number}, d, \textit{result})
2. begin
3. \hspace{1em} \textit{result} := \textit{my_number};
4. \hspace{1em} \textit{msg} := \textit{result};
5. \hspace{1em} \textbf{for} \hspace{0.5em} i := 0 \hspace{0.5em} \textbf{to} \hspace{0.5em} d - 1 \hspace{0.5em} \textbf{do}
6. \hspace{2em} \textit{partner} := \textit{my_id} \text{ XOR } 2^i;
7. \hspace{2em} \textbf{send} \hspace{0.5em} \textit{msg} \hspace{0.5em} \textbf{to} \hspace{0.5em} \textit{partner};
8. \hspace{2em} \textbf{receive} \hspace{0.5em} \textit{number} \hspace{0.5em} \textbf{from} \hspace{0.5em} \textit{partner};
9. \hspace{2em} \textit{msg} := \textit{msg} + \textit{number};
10. \hspace{2em} \textbf{if} \hspace{0.5em} (\textit{partner} < \textit{my_id}) \hspace{0.5em} \textbf{then} \hspace{0.5em} \textit{result} := \textit{result} + \textit{number};
11. \hspace{2em} \textbf{endfor};
12. \textbf{end} \texttt{PREFIX_SUMS_HCUBE}

Prefix sums on a \textit{d}-dimensional hypercube.

\text{Time} = (t_s + t_w m) (\log p)
Scatter and Gather

- In the *scatter* operation, a single node sends a unique message of size m to every other node (also called a one-to-all personalized communication).
- In the *gather* operation, a single node collects a unique message from each node.
- While the scatter operation is fundamentally different from broadcast, the algorithmic structure is similar, except for differences in message sizes (messages get smaller in scatter and stay constant in broadcast).
- The gather operation is exactly the inverse of the scatter operation and can be executed as such.
Gather and Scatter Operations

Scatter and gather operations.
Example of the Scatter Operation

- The scatter operation on an eight-node hypercube.
- Algorithmic approach: **Recursive doubling** (of # of procs. w/ data) and **recursive halving** (of # of data items to be delivered) and **recursive splitting** (of the processor space due to the divide-and-conquer approach).
Time of Scatter and Gather

- There are $\log p$ steps, in each step, the machine size halves and the data size halves.
- We have the time for this operation to be:

$$T = t_s \log p + t_w m(p - 1).$$

- This time holds for a linear array as well as a 2-D mesh.
- These times are asymptotically optimal in message size.
- **Why?** A different-centric reason than for all-to-all broadcast.

$\Omega(m(P-1))$ required by the source processor to send $P-1$ msgs. as this sending is sequentialized at the source.
All-to-All Personalized Communication

- Each node has a distinct message of size m for every other node.
- This is unlike all-to-all broadcast, in which each node sends the same message to all other nodes.
- All-to-all personalized communication is also known as *total exchange*.
All-to-All Personalized Communication

All-to-all personalized communication.
All-to-All Personalized Communication: Example

- Consider the problem of transposing a matrix.
- Each processor contains one full row of the matrix.
- The transpose operation in this case is identical to an all-to-all personalized communication operation.
All-to-All Personalized Communication: Example

All-to-all personalized communication in transposing a 4×4 matrix using four processes.
All-to-All Personalized Communication on a Ring

- Each node sends all pieces of data as one consolidated message of size $m(p - 1)$ to one of its neighbors.
- Each node extracts the information meant for it from the data received, and forwards the remaining $(p - 2)$ pieces of size m each to the next node.
- The algorithm terminates in $p - 1$ steps.
- The size of the message reduces by m at each step.
All-to-all personalized communication on a six-node ring. The label of each message is of the form \(\{x,y\} \), where \(x \) is the label of the node that originally owned the message, and \(y \) is the label of the node that is the final destination of the message. The label \((\{x_1,y_1\}, \{x_2,y_2\}, \ldots, \{x_n,y_n\}) \), indicates a message that is formed by concatenating \(n \) individual messages.
All-to-All Personalized Communication on a Ring: Time

- We have $p - 1$ steps in all.
- In step i, the message size is $m(p - i)$.
- The total time is given by:

$$T = \sum_{i=1}^{p-1} (t_s + t_w m (p - i))$$

$$= t_s (p - 1) + \sum_{i=1}^{p-1} it_w m$$

$$= (t_s + t_w mp/2)(p - 1).$$

- The t_w term in this equation can be reduced by a factor of 2 by communicating messages in both directions.
All-to-All Personalized Communication on a Mesh

- Each node first groups its p messages according to the columns of their destination nodes.
- All-to-all personalized communication is performed independently in each row with clustered messages of size $m \sqrt{p(m \sqrt{p(\sqrt{p-1})})}$—each proc. sends to each of the $\sqrt{p-1}$ procs. in its row $m \sqrt{p}$ data for its col. (m for each of the \sqrt{p} proc. in the col). Messages in each node are sorted again, this time according to the rows of their destination nodes.
- All-to-all personalized communication is performed independently in each column with clustered messages of size $m \sqrt{p(m \sqrt{p(\sqrt{p-1})})}$—data to be sent to $\sqrt{p-1}$ procs. in its col, each such proc. getting $m \sqrt{p}$ data, m from each of the \sqrt{p} procs. in its row.
The distribution of messages at the beginning of each phase of all-to-all personalized communication on a 3×3 mesh. At the end of the second phase, node i has messages $\{0,i\}, \ldots, \{8,i\}$, where $0 \leq i \leq 8$. The groups of nodes communicating together in each phase are enclosed in dotted boundaries.
All-to-All Personalized Communication on a Mesh: Time

- Time for the first phase is identical to that in a ring with \sqrt{p} processors, i.e., $(t_s + t_w mp/2)(\sqrt{p} - 1)$.
- Time in the second phase is identical to the first phase. Therefore, total time is twice of this time, i.e.,

$$T = (2t_s + t_w mp)(\sqrt{p} - 1).$$

- It can be shown that the time for rearrangement is much less than this communication time.
All-to-All Personalized Communication on a Hypercube

- Generalize the mesh algorithm to \(\log p \) steps.
- At any stage in all-to-all personalized communication, every node holds \(p \) packets of size \(m \) each.
- While communicating in a particular dimension, every node sends \(p/2 \) of these packets (consolidated as one message).
- A node must rearrange its messages locally before each of the \(\log p \) communication steps.
All-to-All Personalized Communication on a Hypercube

An all-to-all personalized communication algorithm on a three-dimensional hypercube.
All-to-All Personalized Communication on a Hypercube: Time

- We have \(\log p \) iterations and \(mp/2 \) words are communicated in each iteration. Therefore, the cost is:
 \[T = (t_s + t_w mp/2) \log p. \]

- This is not optimal!
All-to-All Personalized Communication on a Hypercube: Optimal Algorithm

- Each node simply performs \(p - 1 \) communication steps, exchanging \(m \) words of data with a different node in every step.
- A node must choose its communication partner in each step so that the hypercube links do not suffer congestion.
- In the \(j^{th} \) communication step, node \(i \) exchanges data with node \((i \ XOR \ j) \).
- In this schedule, all paths in every communication step are congestion-free (assuming dimension-order routing), and none of the bidirectional links carry more than one message in the same direction.
- This congestion-free communication pattern is similar to that in an Omega n/w that we’ve seen earlier.
All-to-All Personalized Communication on a Hypercube: Optimal Algorithm

Seven steps in all-to-all personalized communication on an eight-node hypercube.
All-to-All Personalized Communication on a Hypercube: Optimal Algorithm

1. procedure ALL_TO_ALL_PERSONAL(d, my_id)
2. begin
3. for $i := 1$ to $2^d - 1$ do
4. begin
5. partner := my_id XOR i;
6. send $M_{my_id,partner}$ to partner;
7. receive $M_{partner,my_id}$ from partner;
8. endfor;
9. end ALL_TO_ALL_PERSONAL

A procedure to perform all-to-all personalized communication on a d-dimensional hypercube. The message $M_{i,j}$ initially resides on node i and is destined for node j.
All-to-All Personalized Communication on a Hypercube: Time Analysis of Optimal Algorithm

- There are $p - 1$ steps and each step involves non-congesting message transfer of m words.
- We have: $T = (t_s + t_w m)(p - 1)$.
- This is asymptotically optimal in message size.
- This complexity ignores the # of hops, which is valid if $m >> 1$. However, if this is not the case, then:
 - $T = (t_s + mt_w)(p-1) + t_h(\Sigma_{i=1}^{\log p} ((\log p) C i)$ /* $(k C i)$ is k-choose-i */
 - $\Rightarrow T = (t_s + mt_w)(p-1) + t_h(2^{\log p}) = (t_s + mt_w)(p-1) + t_h(p)$, which is asymptotically the same as above!
Circular Shift

• A special permutation in which node i sends a data packet to node $(i + q) \mod p$ in a p-node ensemble $(0 \leq q \leq p)$.
Circular Shift on a Mesh

• The implementation on a ring is rather intuitive. It can be performed in \(\min\{q, p - q\} \) neighbor communications.

• Mesh algorithms follow from this as well. We shift in one direction (all processors) followed by the next direction.

• The associated time has an upper bound of:

\[
T = (t_s + t_w m)(\sqrt{p} + 1).
\]
Circular Shift on a Mesh

The communication steps in a circular 5-shift on a 4 x 4 mesh.
Circular Shift on a Hypercube

- Map a linear array with 2^d nodes onto a d-dimensional hypercube.
- To perform a q-shift, we expand q as a sum of distinct powers of 2.
- If q is the sum of s distinct powers of 2, then the circular q-shift on a hypercube is performed in s phases.
- The time for this is upper bounded by:
 $$T = (t_s + t_w m)(2 \log p - 1).$$

- If E-cube routing is used, this time can be reduced to:
 $$T = t_s + t_w m.$$
Circular Shift on a Hypercube

The mapping of an eight-node linear array onto a three-dimensional hypercube to perform a circular 5-shift as a combination of a 4-shift and a 1-shift.
Circular q-shifts on an 8-node hypercube for $1 \leq q < 8$.
Improving Performance of Operations

• Splitting and routing messages into parts: If the message can be split into \(p \) parts, a one-to-all broadcast can be implemented as a scatter operation followed by an all-to-all broadcast operation. The time for this is:

\[
T = 2 \times (t_s \log p + t_w(p - 1) \frac{m}{p})
\]

\[
\approx 2 \times (t_s \log p + t_w m).
\]

• All-to-one reduction can be performed by performing all-to-all reduction (dual of all-to-all broadcast) followed by a gather operation (dual of scatter).
Improving Performance of Operations

• Since an all-reduce operation is semantically equivalent to an all-to-one reduction followed by a one-to-all broadcast, the asymptotically optimal algorithms for these two operations can be used to construct a similar algorithm for the all-reduce operation.

• The intervening gather and scatter operations cancel each other. Therefore, an all-reduce operation requires an all-to-all reduction and an all-to-all broadcast.