PROB. NO.

DECODE

- $m_1 = 0$
- $m_{i+b} = 1$
- $m_{i+1} = 0$

E
- $a_{i+b} = 1$
- $a_{i+1} = 6$
- $b_{i+b} = 12$
- $b_{i+1} = 1$

F
- $a_{i+b} = 1$
- $a_{i+1} = 6$
- $b_{i+b} = 12$
- $b_{i+1} = 1$

C
- $a_{i+b} = 1$
- $a_{i+1} = 6$
- $b_{i+b} = 12$
- $b_{i+1} = 1$

D
- $a_{i+b} = 1$
- $a_{i+1} = 6$
- $b_{i+b} = 12$
- $b_{i+1} = 1$

C++ Analysis

cc used as max when $b = -ve$ and its magnitude is more $i.e. -128$

Then cc needed to combine $A, B, C, 0, 0, status = 4$

$G, H, I = 3$

$E, F, status = 128 + 2 + 1$

Max. cc needed = 264

Now for Avg. no. of cc's we take $b = 4$ let no

For any value of b we need to execute $A, B, C, 0, 0$ once.

and E, F as many times as value of b.

Now for value of b ranging from 1 to 4 we need

$5 \times 7 + 2 = 35 + 2 = 37$

when $b = 0$ then $5 cc$

Now for any $-ve$ b we need to execute $A, B, C, 0, 0$ once

and E, F as many time as value of b.

cc's needed for all values of b $1 - 16$ we need

$8 \times 8 + 8 \times 2 = 64 + 16 = 80$

Total cc's needed to execute for all 16 possible

values of b ranging from -8 to +7 we need

$232 cc$

Avg. no. of cc's needed = $\frac{232}{16} = \frac{116}{16} = 15$