On The Capacity of the Symmetric Interference Channel with a Cognitive Relay at High SNR

Alex Dytso, Natasha Devroye, Daniela Tuninetti
University of Illinois at Chicago

The work of the authors was partially funded by NSF under awards 0643954 and 1017436.
Motivation

- interference channel (IFC) with one cognitive relay (CR)
Motivation

• interference channel (IFC) with one cognitive relay (CR)

• how does the presence of a CR change the capacity?
General model that contains...

- interference channel

\[X_1 | h_{11} | + | h_{12} | X_2 \]
\[Y_1 | h_{21} | + | h_{22} | Y_2 \]
\[Z_1 | W_1 \]
\[Z_2 | W_2 \]
General model that contains...

- interference channel
- broadcast channel
General model that contains...

- interference channel
- broadcast channel
- cognitive interference channel
Past work
Past work

- non-causal cognition [Sahin, Erkip, 2007], [Sridharan, Vishwanath, Jafar, Shamai, 2008], [Jiang, Maric, Goldsmith, Cui, 2009], inner + outer bounds for DMC, Gaussian channels
Past work

- non-causal cognition [Sahin, Erkip, 2007], [Sridharan, Vishwanath, Jafar, Shamai, 2008], [Jiang, Maric, Goldsmith, Cui, 2009], inner + outer bounds for DMC, Gaussian channels

- outer bounds DMC, 3 bit to capacity for Gaussian no blue interference links [Rini, Tuninetti, Devroye, 2010, 2011]
Past work

- non-causal cognition [Sahin, Erkip, 2007], [Sridharan, Vishwanath, Jafar, Shamai, 2008], [Jiang, Maric, Goldsmith, Cui, 2009], inner + outer bounds for DMC, Gaussian channels

- causal cognition, direct links [Sahin, Erkip, 2007]

- outer bounds DMC, 3 bit to capacity for Gaussian no blue interference links [Rini, Tuninetti, Devroye, 2010, 2011]
Past work

- non-causal cognition [Sahin, Erkip, 2007], [Sridharan, Vishwanath, Jafar, Shamai, 2008], [Jiang, Maric, Goldsmith, Cui, 2009], inner + outer bounds for DMC, Gaussian channels

- out-of-band cognition/links [Tian, Yener, 2010], [Sahin, Simeone, Erkip, 2010], [Razaghi, Hong, Zhou, Wei, Caire, 2011]

- causal cognition, direct links [Sahin, Erkip, 2007]

- outer bounds DMC, 3 bit to capacity for Gaussian no blue interference links [Rini, Tuninetti, Devroye, 2010, 2011]
• specialize and tighten DMC outer bound of [Rini, Tuninetti, Devroye 2010] to linear deterministic, symmetric IFC-CR (models Gaussian channel at high SNR)
Contributions/outline

• specialize and tighten DMC outer bound of [Rini, Tuninetti, Devroye 2010] to **linear deterministic, symmetric IFC-CR** (models Gaussian channel at high SNR)

• show capacity for symmetric linear deterministic IFC-CR for almost all parameter regimes → insight into **optimal Tx strategies**!
Channel model

Gaussian symmetric IFC-CR:

\[Y_1 = |h_S|X_1 + |h_C|X_c + h_I X_2 + Z_1 \]
\[Y_2 = h_I X_1 + |h_C|X_c + |h_S|X_2 + Z_2 \]

\[N = \max(n_S, n_C, n_I), S = N \times N \text{ shift matrix} \]
Channel model

Gaussian symmetric IFC-CR:

\[
Y_1 = |h_S|X_1 + |h_C|X_c + h_I X_2 + Z_1 \\
Y_2 = h_I X_1 + |h_C|X_c + |h_S|X_2 + Z_2
\]

Linear deterministic sym. IFC-CR: *(models above at high SNR)*

\[
Y_1 = S^{N-n_s} X_1 + S^{N-n_C} X_c + S^{N-n_I} X_2 \\
Y_2 = S^{N-n_I} X_1 + S^{N-n_C} X_c + S^{N-n_s} X_2
\]

\[N = \max(n_S, n_C, n_I), S = N \times N \text{ shift matrix}\]
Linear deterministic channel model

\[
Y_1 = S^{N-n_s} X_1 + S^{N-n_c} X_c + S^{N-n_I} X_2
\]
\[
Y_2 = S^{N-n_I} X_1 + S^{N-n_c} X_c + S^{N-n_s} X_2
\]

\[
n_S > 0
\]
\[
n_I = \alpha n_S
\]
\[
n_C = \beta n_S
\]
Encoders, decoders and capacity

\[Y_1 = S^{N-n_s} X_1 + S^{N-n_C} X_C + S^{N-n_I} X_2 \]
\[Y_2 = S^{N-n_I} X_1 + S^{N-n_C} X_C + S^{N-n_s} X_2 \]

\[n_S > 0 \]
\[n_I = \alpha n_S \]
\[n_C = \beta n_S \]
Encoders, decoders and capacity

\[Y_1 = S^{N-n_s} X_1 + S^{N-n_C} X_c + S^{N-n_I} X_2 \]
\[Y_2 = S^{N-n_I} X_1 + S^{N-n_C} X_c + S^{N-n_s} X_2 \]
\[n_s > 0 \]
\[n_I = \alpha n_s \]
\[n_C = \beta n_s \]

- \(W_1 \in \{1, 2, \ldots, 2^n R_1\} \), \(W_2 \in \{1, 2, \ldots, 2^n R_2\} \)
Encoders, decoders and capacity

\[Y_1 = S^{N-n_s} X_1 + S^{N-n_c} X_c + S^{N-n_I} X_2 \]
\[Y_2 = S^{N-n_I} X_1 + S^{N-n_c} X_c + S^{N-n_s} X_2 \]

- \(W_1 \in \{1, 2, \ldots, 2^{nR_1}\} \), \(W_2 \in \{1, 2, \ldots, 2^{nR_2}\} \)
- encoding functions \(X_1^n(W_1), X_2^n(W_2), X_c^n(W_1, W_2) \)

\(n_S > 0 \)
\(n_I = \alpha n_S \)
\(n_C = \beta n_S \)
Encoders, decoders and capacity

$W_1 \to X_1 \xrightarrow{n_s} Y_1 \to \tilde{W}_1$

$W_2 \to X_2 \xrightarrow{n_s} Y_2 \to \tilde{W}_2$

$Y_1 = S^{N-n_S}X_1 + S^{N-n_C}X_c + S^{N-n_I}X_2$

$Y_2 = S^{N-n_I}X_1 + S^{N-n_C}X_c + S^{N-n_s}X_2$

$n_S > 0$

$n_I = \alpha n_S$

$n_C = \beta n_S$

- $W_1 \in \{1, 2, \ldots, 2^{nR_1}\}$, $W_2 \in \{1, 2, \ldots, 2^{nR_2}\}$
- encoding functions $X_1^n(W_1)$, $X_2^n(W_2)$, $X_c^n(W_1, W_2)$
- decoding functions $\tilde{W}_1(Y_1^n)$, $\tilde{W}_2(Y_2^n)$
Encoders, decoders and capacity

- $W_1 \in \{1, 2, \ldots, 2^{nR_1}\}$, $W_2 \in \{1, 2, \ldots, 2^{nR_2}\}$
- encoding functions $X_1^n(W_1)$, $X_2^n(W_2)$, $X_c^n(W_1, W_2)$
- decoding functions $\hat{W}_1(Y_1^n)$, $\hat{W}_2(Y_2^n)$
- seek rates (R_1, R_2) for which \exists en/decoding functions such that $\Pr[(W_1, W_2) \neq (\hat{W}_1, \hat{W}_2)] \to 0$ as $n \to \infty$

\[
Y_1 = S^{N-n_s}X_1 + S^{N-n_C}X_c + S^{N-n_I}X_2
\]
\[
Y_2 = S^{N-n_I}X_1 + S^{N-n_C}X_c + S^{N-n_s}X_2
\]

$n_S > 0$

$n_I = \alpha n_S$

$n_C = \beta n_S$
Encoders, decoders and capacity

\[Y_1 = S^{N-n_S} X_1 + S^{N-n_C} X_c + S^{N-n_I} X_2 \]
\[Y_2 = S^{N-n_I} X_1 + S^{N-n_C} X_c + S^{N-n_S} X_2 \]

- \(W_1 \in \{1, 2, \ldots, 2^{nR_1}\} \), \(W_2 \in \{1, 2, \ldots, 2^{nR_2}\} \)
- encoding functions \(X_1^n(W_1), X_2^n(W_2), X_c^n(W_1, W_2) \)
- decoding functions \(\widehat{W}_1(Y_1^n), \widehat{W}_2(Y_2^n) \)
- seek rates \((R_1, R_2) \) for which \(\exists \) en/decoding functions such that \(\Pr[(W_1, W_2) \neq (\widehat{W}_1, \widehat{W}_2)] \to 0 \) as \(n \to \infty \)

Maximal rates = capacity
• we TIGHTEN outer bound of [Rini, Tuninetti, Devroye, ITW Dublin 2010] for general memoryless IFC-CR (exploits Sato’s argument for BC) + linear det. IFC-CR

With the parameterization \(n_I = \alpha n_S, n_C = \beta n_S \), the outer bound in [RTD, ITW 2010] becomes

\[
\begin{align*}
R_1 & \leq \max\{1, \beta\}, \\
R_2 & \leq \max\{1, \beta\}, \\
R_1 + R_2 & \leq [1 - \max\{\alpha, \beta\}]^+ + \beta + \max\{1, \alpha\} \\
R_1 + R_2 & \leq \max\{1, \beta\} \text{ apply for } \alpha = 1 \text{ only} \\
R_1 + R_2 & \leq 2 \max\{1 - \alpha, \alpha, \beta\} + \text{MLP} \\
2R_1 + R_2 & \leq \max\{1, \beta, \alpha\} + \max\{1 - \alpha, \alpha, \beta\} + \max\{1 - \alpha, \beta\} + \text{MLP} \\
R_1 + 2R_2 & \leq \max\{1, \beta, \alpha\} + \max\{1 - \alpha, \alpha, \beta\} + \max\{1 - \alpha, \beta\} + \text{MLP}
\end{align*}
\]

with MLP := 2 \min\{\alpha, \beta\}.
Outer bounds - linear deterministic IFC-CR

• we TIGHTEN outer bound of [Rini, Tuninetti, Devroye, ITW Dublin 2010] for general memoryless IFC-CR (exploits Sato’s argument for BC) + linear det. IFC-CR

With the parameterization $n_I = \alpha n_S$, $n_C = \beta n_S$, the outer bound in [RTD, ITW 2010] becomes

\[
\begin{align*}
R_1 &\leq \max\{1, \beta\}, \\
R_2 &\leq \max\{1, \beta\}, \\
R_1 + R_2 &\leq [1 - \max\{1 - \alpha, \beta\}]\max\{1, \alpha\} \\
R_1 + R_2 &< \max\{1 - \alpha, \alpha, \beta\} + \text{MLP} \quad \text{for } \alpha = 1 \text{ only} \\
R_2 &\leq \max\{1, \beta, \alpha\} + \max\{1 - \alpha, \alpha, \beta\} + \max\{1 - \alpha, \beta\} + \text{MLP} \\
R_1 + 2R_2 &\leq \max\{1, \beta, \alpha\} + \max\{1 - \alpha, \alpha, \beta\} + \max\{1 - \alpha, \beta\} + \text{MLP}
\end{align*}
\]

with MLP := $2 \min\{\alpha, \beta\}$. Which max are tight determine regions!
Sub-regions

\[
\begin{align*}
\beta \\
\| & \| \| \\
I & II & III \\
1 & 1 & 1 \\
V & VI & IV \\
1 & 1 & 1 \\
\end{align*}
\]

\[
\begin{align*}
\alpha & \alpha \\
1 & 1 & 1 \\
I & II & III \\
1 & 1 & 1 \\
\end{align*}
\]

\[
\begin{align*}
W_1 & \rightarrow X_1 & n_S & \rightarrow Y_1 & \rightarrow \tilde{W}_1 \\
& \downarrow & n_l & \downarrow & \\
& \downarrow & n_c & \downarrow & \\
W_2 & \rightarrow X_2 & n_S & \rightarrow Y_2 & \rightarrow \tilde{W}_2 \\
& \downarrow & n_c & \downarrow & \\
& \downarrow & n_l & \downarrow & \\
X_c & & & & \\
\end{align*}
\]

\[
\begin{align*}
n_S & > 0 \\
n_I & = \alpha n_S \\
n_C & = \beta n_S
\end{align*}
\]
Three generic cognitive achievability strategies

- bit cancellation
Three generic cognitive achievability strategies

- **bit cancellation**

- **bit sharing**
Three generic cognitive achievability strategies

• bit cancellation

• bit sharing

• bit cleaning
\[\alpha = 1 \]

Outer bound reduces to

\[
R_1 + R_2 \leq \max\{1, \beta\}
\]

- Achieved via time-sharing between nodes (and CR fully helps non-silent node)
Regimes I and II: $\alpha > \max\{1, \beta\}$

(a) Optimal Strategy for Regime I for $\alpha > 2$.

R_{X_1}

$C = A_2 \oplus B_2$

R_{X_2}
Regimes I and II: $\alpha > \max\{1, \beta\}$

user 1 wants A

(a) Optimal Strategy for Regime I for $\alpha > 2$.
Regimes I and II: $\alpha > \max\{1, \beta\}$

\[
\begin{align*}
R_{x_1} & \quad C = A_2 \oplus B_2 \\
R_{x_2} &
\end{align*}
\]

(a) Optimal Strategy for Regime I for $\alpha > 2$.

user 1 wants \textbf{A}
user 2 wants \textbf{B}
Regimes I and II: $\alpha > \max\{1, \beta\}$

High interference: bit-cancellation!

User 1 wants A
User 2 wants B

(a) Optimal Strategy for Regime I for $\alpha > 2$.

R_{X_1} \(C = A_2 \oplus B_2 \) \(R_{X_2} \)
Regimes III and IV: $\beta > \max\{1, \alpha\}$

High cognitive:
- bit-sharing +
- bit-cancellation +
- bit-cleaning!

- $C_1 = A_1 \oplus B_1$
- $C_2 = A_2 \oplus B_2$

(b) Optimal Strategy for Regime III.
Regimes III and IV: \(\beta > \max\{1, \alpha\} \)

<table>
<thead>
<tr>
<th>cognitive</th>
<th>direct</th>
<th>interference</th>
</tr>
</thead>
</table>

- **high cognitive:**
 - bit-sharing +
 - bit-cancellation+
 - bit-cleaning!

\[
\begin{align*}
\beta - \alpha & < 0 \\
\beta - \alpha + 1 & \geq 0
\end{align*}
\]

\[
\begin{align*}
C_1 = A_1 \oplus B_1 \\
C_2 = A_2 \oplus B_2
\end{align*}
\]

\[
\begin{align*}
A_1 & = 0 \\
A_2 & = \beta - \alpha + 1 \\
A_3 & = \beta - \alpha
\end{align*}
\]

\[
\begin{align*}
B_1 & = 0 \\
B_2 & = \alpha
\end{align*}
\]

\[
\begin{align*}
X_1 & = 0 \\
X_C & = \beta \\
X_2 & = 1
\end{align*}
\]

(b) Optimal Strategy for Regime III.
Regimes III and IV: $\beta > \max\{1, \alpha\}$

high cognitive: bit-sharing + bit-cancellation + bit-cleaning!

(b) Optimal Strategy for Regime III.
Regimes III and IV: \(\beta > \max\{1, \alpha\} \)

High cognitive: bit-sharing + bit-cancellation + bit-cleaning!

(b) Optimal Strategy for Regime III.
Regime V: $0 < \alpha < \beta < 1$

(high direct: \hspace{1cm} bit-cancellation\hspace{1cm} + \hspace{1cm} bit-cleaning!)

(c) Optimal Strategy for Regime V.
Regime V: $0 < \alpha < \beta < 1$

(c) Optimal Strategy for Regime V.

(high direct: bit-cancellation + bit-cleaning!)
Regime V: $0 < \alpha < \beta < 1$

(c) Optimal Strategy for Regime V.

high direct: bit-cancellation+
bit-cleaning!
Regime VI.1: $0 < \beta < \alpha < \frac{1}{2}$

(a) Optimal Strategy for Regime VI.I.

bit-cancellation

bit-cleaning!
Regime VI.1: \(0 < \beta < \alpha < \frac{1}{2} \)

(a) Optimal Strategy for Regime VI.1.
Regime VI.1: $0 < \beta < \alpha < \frac{1}{2}$

(a) Optimal Strategy for Regime VI.1.
Missing in regimes VI.2 VI.3, VI.4?

- related to most complex part of “W” curve for IC

- we believe outer bound is problem: too loose bounding does not capture correlation between signals, or may need another $2R_1 + R_2$ - type bound

- mention some possible strategies in paper

- what is Gaussian version of 3 transmission strategies?
Conclusion

• focus on role of cognitive cooperation in an interference channel

• depending on strength of cognition, different behaviors perform well
Conclusion

• focus on role of cognitive cooperation in an interference channel

• depending on strength of cognition, different behaviors perform well

• missing last small piece...
Conclusion

• focus on role of cognitive cooperation in an interference channel

• depending on strength of cognition, different behaviors perform well

• missing last small piece...

• how to translate results back to Gaussian?