Multi-pair bi-directional relay networks part I: protocols which exploit side-information

Sang Joon Kim, Besma Smida, and Natasha Devroye

Abstract—The multi-pair bi-directional relay network under consideration consists of one base-station, multiple (say m) terminal nodes and one relay, all of which are half-duplex, in which, contrary to prior work, each node has a direct link with every other node. Each of the m terminal nodes exchanges messages with the base-station in a bi-directional fashion, leading to $2m$ total messages to be communicated with the (possible) help of the relay. The contributions in part I are: 1) the introduction of three new temporal protocols which fully exploit the two-way nature of the data and over-heard side-information through network coding and random binning, 2) derivations of achievable rate regions for the multi-pair two-way network, and 3) a numerical evaluation of the derived regions in Gaussian noise which illustrate the performance of the proposed protocols. Outer bounds and the impact of cooperation between terminals nodes in an identical setting are considered in part II of this work.

Index Terms—bi-directional relaying, decode and forward, multi-pair, binning

I. INTRODUCTION

The simplest bi-directional relay network consists of a pair of terminal nodes that wish to exchange messages through the use of a single relay. While the capacity of this channel is still unknown in general, it has been of great recent interest (see the incomplete list [1]–[9]) due to its relevance in future wireless networks. The single relay, single pair bi-directional relay channel has been extended in a number of ways: 1) the consideration of a single bi-directional link using multiple relays [10]–[15], and 2) the consideration of multiple bi-directional links sharing a single, common relay [16]–[20].

The relay network considered in this paper falls into the second category and consists of a base station (node 0) which wishes to communicate simultaneously in a bi-directional fashion with multiple terminal nodes (node 1, · · · , node m) with the help of one relay node (node r). Due to limitations of current technology, all nodes are assumed to be half-duplex and thus cannot transmit and receive simultaneously. This network topology is motivated by recent pushes to extend the coverage, reliability and/or data rates of wireless networks. For example, in a cellular scenario, a relay station is able to enhance the connectivity between a base station and terminals at its cell boundary. The relays may be connected to the base station using a wireless link rather than a wired one, resulting in savings to the operators’ backhaul costs. Another motivating example is satellite communication: satellites can be used to relay signals from one ground station to multiple vehicular terminals on or close to the earth’s surface. In this work, we determine bounds on the capacity regions - which may serve as guides and benchmarks in the design of - such multi-pair two-way communication networks aided by a single relay node.

A. Related work

In [16] a network in which K half-duplex source/destination pairs wish to exchange messages in a bi-directional fashion through a single multi-antenna relay is investigated from a diversity-multiplexing gain perspective. The authors of [17] consider a similar channel model and propose the use of a CDMA strategy to support multiple level QoS to different users. In [18] multiple bi-directional pairs communicate over a shared relay in the absence of a direct link between end nodes, while the two-pair full-duplex bi-directional Gaussian relay network is studied in [19], where a carefully constructed superposition scheme of random and lattice codes was used. Finally, in [20], an arbitrary number of clusters (nodes within a cluster all wish to exchange messages) of arbitrary numbers of full-duplex nodes are assumed to communicate simultaneously through the use of a single relay in AWGN. In all four examples of multi-pair bi-directional communication with a single relay, no direct link between the terminal nodes is assumed to exist, simplifying the analysis as the tradeoff between relayed and directly communication information is avoided; no “over-heard” side information is possible.

B. Our contributions

We consider one base station, multiple terminal nodes and one relay, which operate in half-duplex mode and have direct links to each other, as shown in Fig. 1. The desired bi-directional links may be deduced from the included messages $W_{i,j}$ from node i destined to node j, and $\tilde{W}_{i,j}$ the estimate at node j of the message $W_{i,j}$. The base-station is denoted as node with index 0. Three elements of the formulated problem are markedly different from prior work in this area:

1) the assumption that one end of the bi-directional links is a single base-station rather than independent nodes.
2) fully connected network - our nodes can all hear each other. This allows for the possibility of causal cooperation between nodes as well as direct transmission between the base-station and the nodes, using the relay only when beneficial.
3) in contrast to [18]–[20], our nodes are half-duplex.

Sang Joon Kim was with the School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138. Email: sangkim@fas.harvard.edu. Besma Smida is with the Department of Electrical and Computer Engineering, Purdue University Calumet, Hammond, IN 46323. E-mail: Besma.Smida@calumet.purdue.edu. Natasha Devroye is with the Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607. Email: devroye@ece.uic.edu.
Our central contributions are:

- We propose three temporal protocols which we call the FMABC (Full Multiple Access Broadcast), PMABC (Partial Multiple Access Broadcast) and FTDBC (Full Time Division Broadcast) protocols.
- We determine inner bounds on the capacity region of the multi-pair bi-directional relay network. Key elements of the schemes employed to do so include the use of multi-user protocols in which more than one terminal may be transmitting/receiving at one time as in MAC and BC channels, random binning to exploit overheard side-information when the protocol permits, and the use of a flow-by-flow network coding strategy which exploits the two-way nature of data flows - all of which will be detailed in Section III.

II. NOTATIONS AND DEFINITIONS

We consider a base station (node 0), a set of terminal nodes $B := \{1, 2, \cdots, m\}$ and a relay r which aids in the communication between the terminal nodes and the base station. We define $M := B \cup \{0\} = \{0, 1, 2, \cdots, m\}$. We use $R_{i,j}$ to denote the rate of communication from node i to node j, i.e. the message between node i and node j, $W_{i,j}$, lies in the set $S_{i,j} := \{0, \cdots, \lfloor 2^{nR_{i,j}} \rfloor - 1\}$. Similarly, $R_{S,T}$ is the sum of rates from set S to set T, $S, T \subseteq M$ at which the messages $W_{S,T} := \{W_{i,j}|i \in S, j \in T, S, T \subseteq M\}$ may be reliably communicated. We assume that each end user communicates with the base station bi-directionally and that no information is directly exchanged between end users: i.e. every pair of terminal nodes 0 and $i \in [1, m]$ wishes to exchange independent messages while $R_{i,0} = 0$ (or is undefined) for all $i, j \in B$. Thus, there are a total of $2m$ messages in our network: m from node 0 to each node $i \in B$, and m from each node $i \in B$ to node 0, as shown in Fig. 1.

Communication takes place over a number of channel uses, n and rates are achieved in the classical asymptotic sense as $n \to \infty$ [3]. Node i has input alphabet $X_i = X_i \cup \{\varnothing\}$ and channel output alphabet $Y_i = Y_i \cup \{\varnothing\}$, which are related through a discrete memoryless channel\(^1\). Lower case letters x_i denote instances of the upper case X_i which lie in the calligraphic alphabets X_i. Boldface x_i represents a vector indexed by time at node i. Finally, it is convenient to denote by $x_S := \{x_i| i \in S\}$, a set of vectors indexed by time, and \otimes as the cartesian product, i.e., $\otimes_{i=1}^3 X_i = X_1 \times X_2 \times X_3$.

During phase ℓ we use $X_i^{(\ell)}$ to denote the input distribution and $Y_j^{(\ell)}$ to denote the distribution of the received signal of node i, and we use the dummy symbol \varnothing to denote that there is no input or no output at a particular node during a particular phase. $\Delta_{i,n}$ is the phase duration of phase i with block size n and Δ_i is the phase duration of phase i when $n \to \infty$. It is also convenient to define $X_S^{(\ell)} := \{X_i^{(\ell)}| i \in S\}$, a set of input distributions during phase ℓ.

For a block length n, encoders and decoders are functions $X_i^k(W_i, M, Y_i^1, \cdots, Y_{i,k-1})$ producing an encoded message at node i, and $W_{i,j}(Y_1^j, \cdots, Y_n^j, W(j), M)$ producing a decoded message or error at node j when it wishes to decode the message $W_{i,j}$ from node i. Finally, let $S(j) := \{i| i < j, i \in S\}$.

III. PROTOCOLS FOR A MULTI-PAIR BI-DIRECTIONAL RELAY NETWORK

The total transmission time is divided into two time periods, each of which may consist of one or more phases. During the first multiple access period, the terminal nodes transmit to the relay. During the second broadcast period the relay transmits to the terminal nodes. We consider three transmission schemes for the multiple-access period: 1) Full Multiple Access Broadcast (FMABC) protocol: all terminal nodes transmit for the whole duration, 2) Partial Multiple Access Broadcast (PMABC) protocol: 0 uses the whole duration and the other terminal nodes $1, \cdots, m$ transmit sequentially, and 3) Full Time Division Broadcast (FTDBC) protocol: all nodes transmit sequentially, as shown in Fig. 2.

For comparison purposes in our simulations, we also introduce what we call the simplest sequential protocol where all terminal nodes sequentially transmit information to the relay, i.e., $0 \to r$, $1 \to r$, \cdots, $m \to r$, then the relay sequentially transmits them to the proper destinations, i.e., $r \to 0$, $r \to 1$, \cdots, $r \to m$.

The FMABC, PMABC and FTDBC protocols describe the temporal phases or periods of the transmission scheme but not what each node sends, or how its messages are encoded during those phases. In part I we will use network coding and random binning schemes to exploit the two-way nature and overheard information, respectively. In part II we will additionally quantify the impact of employing cooperation between the end users. The central technical concepts employed in deriving achievable rate regions are:

1) Extended Marton’s region for broadcasting: Due to the presence of a base-station with multiple messages (one to each of the terminal nodes), and a relay with multiple decoded messages (traveling to multiple end users and the base-station), we use a modified version of a generalization of Marton’s broadcasting scheme [21] to > 2 messages/users, which takes into account own-message side-information at each node. A full statement of this generalization may be found in [22].
Network coding and ‘R’ stands for Random binning, which exploit the two-way nature of the data and overheard side information which is possible when a node is not transmitting. These regions are presented for discrete memoryless channels and will be evaluated in Gaussian noise in the following section. Due to space constraints, all proofs are omitted and provided in [22], available online.

A. FMABC-N Protocol

We consider the FMABC protocol in which Network coding is employed at the relay to combine messages on a flow-by-flow basis - i.e. the message from node i to node 0 and vice-versa are combined at the relay. The U_i variables are the auxiliary random variables playing a role similar to those in Marton’s region [21] and its > 2 user extension in [22].

Theorem 1: An achievable rate region of the multi-pair half-duplex bi-directional relay network under the FTDBC-N protocol with decode and forward relaying is the closure of the set of all points $(R_{0,b}, R_{b,0})$ for all $b \in B$ satisfying

$$R_{S,M} < \Delta_1 \{X_S^{(1)}; Y_r^{(1)}|X_S^{(1)}, Q\}$$ (1)

$$R_{(0),T} < \sum_{t \in T} \Delta_2 \{U_t^{(2)}; Y_t^{(2)}\} - \Delta_2 \{U_t^{(2)}; U_t^{(2)}\}$$ (2)

$$R_{(0),T} < \Delta_2 \{U_T^{(2)}; Y_T^{(2)}\}$$ (3)

for $S \subseteq \mathcal{M}$ and $T \subseteq \mathcal{B}$ over all joint distributions $p(q) \prod_{i=0}^m p^{(1)}(x_i|q)^{\delta^{(1)}}(u_1, \ldots, u_m, r_i)$, where U_j’s are the auxiliary random variables, and $|Q| \leq 2^{m+1} - 1$ over the alphabet $\bigotimes_{i=0}^m \mathcal{X}_i \times \bigotimes_{i=1}^m \mathcal{U}_j \times \mathcal{X}_T \times Q$. □

We note that for the FMABC random-binning to exploit over-heard information is impossible as there is no over-heard side information: during each phase every node is either transmitting or receiving - none are just listening. Under the PMABC and FTDBC protocols however, side-information may be exploited using random binning, as described next.

B. PMABC-NR Protocol

We now consider the PMABC protocol in which Network coding is employed at the relay to combine messages on a flow-by-flow basis, along with Random Binning at the base-station node 0 to allow the end-nodes to exploit information overheard in the phases during which they are not transmitting. In the following theorem, the U_i variables are the auxiliary random variables similar to those seen in Marton’s BC-channel region [21] and its extension [22], while $V_{0,i}$ are auxiliary random variables used for binning the message $W_{0,i}$ at the base-station node 0 for node i. We note that binning is only possible at the base-station for the end-users as in the PMABC protocol the base-station is always transmitting during the multiple-access period.

Theorem 2: An achievable rate region of the multi-pair half-duplex bi-directional relay network under the PMABC-NR protocol is the closure of the set of all points $(R_{0,b}, R_{b,0})$ for all $b \in B$.
for all \(b \in \mathcal{B} \) satisfying
\[
R_{(0),T} + R_{S,(0)} < \sum_{i \in S} \Delta_i I(V_{0i}^{(s)};X_i^{(s)};Y_i^{(s)},V_{0i}^{(s)}|Q)
+ \sum_{i \in \mathcal{G}} \Delta_i I(V_{0i}^{(s)};Y_i^{(s)};V_{0i}^{(s)}|X_i^{(s)},Q)
\]
\[
R_{(0),S} < \sum_{i \in S} m \sum_{j=1} \left(\Delta_i I(V_{0i}^{(j)};Y_i^{(j)}|Q) - \Delta_i I(V_{0i}^{(j)};V_{03i}^{(j)}|Q) \right)
+ \Delta_{m+1} I(U_i^{(m+1)};Y_i^{(m+1)}) - \Delta_{m+1} I(U_i^{(m+1)};U_{S(i)}^{(m+1)})
\]
\[
R_{S,(0)} < \Delta_{m+1} I(U_{S}^{(m+1)};U_{0}^{(m+1)};U_{S(i)}^{(m+1)})
\]
for all \(i \in \mathcal{B} \) and \(S,T \subseteq \mathcal{B} \) over all joint distributions \(p(q) \cdot \left(\prod_{m=1} p^{(j)}(v_0,\ldots,v_m,x_0|q)p_i(x_i|q) \right) \) \(p^{(m+1)}(u_1,\ldots,u_m,x_{ij}) \), where \(V_{0i} \) are the auxiliary random variables at node 0, \(U_i \)'s are the auxiliary randomly chosen \(\mathcal{M} \)-ary random variables used at node \(j \) and \(V_{0T} := \{V_{0i}|s \in T\} \) with \(|Q| \leq 2^{2m} + 2m \) over the alphabet \(\times_{i=0}^{m} X_i \times \times_{j=1}^{m} V_{0j} \times U_j \times X_i \times Q \).

Equation (4) ensures correct decoding at the relay, (5) ensures correct combining of overheard and relayed messages at the end users, while (6) ensures correct decoding at the base-station of the messages relayed (no side-information).

C. FTDBC-NR Protocol

The \(U_i \) and \(V_{0i} \) variables have the same interpretation as in Theorem 2.

Theorem 3: An achievable rate region of the multi-pair half-duplex bi-directional relay network under the FTDBC-NR protocol is the closure of the set of all points \((R_{0b},R_{b0})\) for all \(b \in \mathcal{B} \) satisfying
\[
R_{(0),S} < \Delta_{i} I(V_{0i}^{(1)};X_i^{(1)},V_{0i}^{(1)})
\]
\[
R_{0,i} < \Delta_{i} I(X_i^{(1)};U_{S}^{(1)})
\]
\[
R_{(0),S} < \sum_{i \in S} \Delta_{i} I(V_{0i}^{(1)};Y_i^{(1)}) - \Delta_{i} I(V_{0i}^{(1)};V_{0i}^{(1)})
+ \Delta_{m+2} I(U_i^{(m+2)};Y_i^{(m+2)} - \Delta_{m+2} I(U_i^{(m+2)};U_{S(i)}^{(m+2)})
\]
\[
R_{S,(0)} < \sum_{i \in S} \Delta_{i} I(X_i^{(1)};Y_i^{(1)})
+ \Delta_{m+2} I(U_{S}^{(m+2)};U_{0}^{(m+2)};U_{S(i)}^{(m+2)})
\]
for all \(i \in \mathcal{B} \) and \(S \subseteq \mathcal{B} \) over all joint distributions \(p^{(1)}(v_0,\ldots,v_m,x_0|q)p_i(x_i|q) \cdot \left(\prod_{j=1}^{m} p^{(j)}(v_{0j},x_j|q) \right) \) \(p^{(m+1)}(u_1,\ldots,u_m,x_{ij}) \), where \(V_{0j},U_j \)'s are the auxiliary random variables and \(V_{0T} := \{V_{0s}|s \in T\} \) over the alphabet \(\times_{i=0}^{m} X_i \times \times_{j=1}^{m} V_{0j} \times U_j \times X_i \times Q \).

Remark 4: (7) and (8) correspond to the transmissions from \(M \) to the relay \(r \), while (9) – (10) correspond to the relay broadcast phase.

V. NUMERICAL ANALYSIS

We assume an additive white Gaussian noise (AWGN) channel model, assume Gaussian input distributions for the achievability schemes, which may or may not be optimal, and evaluate the mutual information terms. The corresponding mathematical channel model is, for each channel use \(k \):
\[
Y[k] = HX[k] + Z[k]
\]
where \(Y[k], X[k] \) and \(Z[k] \) are independent, of unit power, additive, white Gaussian, complex and circularly symmetric, and \(H \in \mathbb{C}^{(m+2)\times(m+2)} \) relate the vector channel inputs and output, which are placed in the order 0, 1, 2, \ldots, \(m, r \). In phase \(r \), if node \(i \) is in transmission mode \(X_i^{(e)} \) follows the input distribution \(X_i^{(e)} \sim \mathcal{CN}(0,P) \). Otherwise, \(X_i^{(e)} = \emptyset \), which means that the input symbol does not exist in the above mathematical channel model. We assume full CSI.

We use the following channel gain matrix for \(m = 2 \) case:
\[
H = \begin{bmatrix}
0 & 0.3 & 0.05 & 1 \\
0.3 & 0 & 1.5 & 1 \\
0.05 & 1.5 & 0 & 0.2 \\
1 & 1 & 0.2 & 0
\end{bmatrix}
\]
(11)

First we compare the achievable rate regions of the different protocols, using different combinations of encoding schemes, with the simplest protocol. We set \(P_0 = P_1 = P_2 = P_r = 0 \) dB. For more realistic comparison, we add lower limits of individual data rates, i.e., \(R_{0,1} \geq 0.01, R_{0,2} = 0.01, R_{1,0} \geq 0.01, R_{2,0} \geq 0.01 \) to guarantee minimum information flow in each data link. Without this limitation, the sum-data rate will be maximized when both the transmission rates \(R_{0,2} \) and \(R_{2,0} \) equal zero at least in the Simplest case because the link between the relay and the node 2 is very poor. In Fig. 3, there are three achievable rate regions: 1) the simplest protocol (Simple), 2) convex hull of the FMABC, PMABC and FTDBC protocols, while MB-NR denotes the convex hull of the FMABC-N, PMABC-NR and FTDBC-NR protocols.

The Simple region is outer bounded by the MB region. This implies that the proposed protocols using only conventional MAC and extended Marton’s broadcasting coding greatly enhance the performance. Furthermore, we can significantly improve the achievable rate region by Network coding and Random binning schemes (in MB-NR). We want to emphasize that the results such that Simple \(\subseteq \text{MB} \subseteq \text{MB-NR} \) is not affected by the minimum rate constraints, i.e., this is true in most cases.

The achievable regions of the FMABC-N, PMABC-NR and FTDBC-NR protocols in three different SNR regimes are plotted in Figs. (4, 5, 6). The 4-dimensional rate regions in
\((R_{0,1}, R_{0,2}, R_{1,0}, R_{2,0}) \) are projected onto \((R_{0,1} + R_{0,2}, R_{1,0} + R_{2,0})\) 2-dimensional space. The main outcome is that different protocols are optimal under different channel conditions. This is because the amount of side information and multiple access interference is different. In the low SNR regime (Fig. 4), the FMABC-N protocol outperforms the other protocols since the amount of both side information and multiple access interference is relatively small. However, in the high SNR regime (Fig. 6), the FTDBC-NR protocol becomes the best since it exploits side information more effectively. In Fig. 5 the PMABC-NR protocol outperforms the other two protocols. Indeed, if we allow larger input power for the base station (node 0) and relay (node \(r \)), the direct links from the base station are good enough to convey information. The terminal nodes can then exploit the side information efficiently. Therefore, the PMABC-NR protocol has the best performance in this channel condition.

VI. CONCLUSION

In this paper, we proposed three protocols for the half-duplex multi-pair bi-directional relay network: the FMABC, PMABC and FTDBC protocols which were combined with the following coding schemes in deriving achievable rate regions: generalized Marton broadcasting, Network coding, and Random binning. We compared these regions in an AWGN Gaussian noise channel where numerical simulations verified that which protocol is superior depends on the channel conditions. In part II we will present cut-set based outer bounds along with a compress-and-forward-based cooperation scheme at terminal nodes.

REFERENCES

