List decoding for nested lattices and applications to relay channels

Yiwei Song, Natasha Devroye
Lattices codes good for multi-user AWGN channels

- achieves capacity of AWGN channel [Erez, Zamir, Trans. IT, 2004]
Lattices codes good for multi-user AWGN channels

- achieves capacity of AWGN channel [Erez, Zamir, Trans. IT, 2004]
- AWGN broadcast channel [Zamir, Shamai, Erez, Trans. IT, 2002]
Lattices codes good for multi-user AWGN channels

- achieves capacity of AWGN channel [Erez, Zamir, Trans. IT, 2004]

- AWGN broadcast channel [Zamir, Shamai, Erez, Trans. IT, 2002]

- AWGN multiple-access [Nazer, Gastpar, ArXiv 2009] and "dirty" multiple-access channels [Philosof, Khisti, Erez, Zamir, ISIT 2007]
Lattices codes good for multi-user AWGN channels

- achieves capacity of AWGN channel [Erez, Zamir, Trans. IT, 2004]
- AWGN broadcast channel [Zamir, Shamai, Erez, Trans. IT, 2002]
- AWGN multiple-access [Nazer, Gastpar, ArXiv 2009] and “dirty” multiple-access channels [Philosof, Khisti, Erez, Zamir, ISIT 2007]
- Distributed source coding [Krithivasan, Pradhan, arXiv 2007]
Lattices codes good for multi-user AWGN channels

- achieves capacity of AWGN channel [Erez, Zamir, Trans. IT, 2004]

- AWGN broadcast channel [Zamir, Shamai, Erez, Trans. IT, 2002]

- AWGN multiple-access [Nazer, Gastpar, ArXiv 2009] and “dirty” multiple-access channels [Philosof, Khisti, Erez, Zamir, ISIT 2007]

- Distributed source coding [Krithivasan, Pradhan, arXiv 2007]

- AWGN inference channel: interference decoding / interference alignment in K>2 interference channels [Bresler, Parekh, Tse, ArXiv 2008] [Sridharan, Jafarian, Jafar, Shamai, arXiv 2008]
Lattices codes for two-way AWGN relay channels

- AWGN two-way relay channels
 [Wilson, Narayanan, Pfister, Sprintson, Trans. IT, to appear] [Nam, Chung, Lee, Trans. IT, to appear]
Lattices codes for two-way AWGN relay channels

- AWGN two-way relay channels
 [Wilson, Narayanan, Pfister, Sprintson, Trans. IT, to appear] [Nam, Chung, Lee, Trans. IT, to appear]

- achieve to within 1/2 bit/s/Hz gap of cut-set outer bound in absence of direct link
 [Nam, Chung, Lee, Trans. IT, to appear]
Lattices codes for two-way AWGN relay channels

• AWGN two-way relay channels
 [Wilson, Narayanan, Pfister, Sprintson, Trans. IT, to appear] [Nam, Chung, Lee, Trans. IT, to appear]

 • achieve to within 1/2 bit/s/Hz gap of cut-set outer bound in absence of direct link
 [Nam, Chung, Lee, Trans. IT, to appear]

• AWGN multi-way relay channels
Lattices codes for two-way AWGN relay channels

- AWGN two-way relay channels
 [Wilson, Narayanan, Pfister, Sprintson, Trans. IT, to appear] [Nam, Chung, Lee, Trans. IT, to appear]

 \[R \]

 - achieve to within 1/2 bit/s/Hz gap of cut-set outer bound in absence of direct link
 [Nam, Chung, Lee, Trans. IT, to appear]

- AWGN multi-way relay channels

 \[X \]

 - achieve to within 2 bit/sez/Hz/user gap of cut-set outer bound in absence of direct links
Lattice codes missing in?

- AWGN relay channel?
Lattice codes missing in?

- AWGN relay channel?

- Two-way relay channel in **presence of direct links**?
Contributions

• **List decoder** for nested lattices:
 decode a list of particular size which contains correct codeword
Contributions

- **List decoder** for nested lattices: *decode a list of particular size which contains correct codeword*

- **One-way relay channel:** *use list decoder to achieve capacity of physically degraded AWGN relay channel with nested lattices*
Contributions

- **List decoder** for nested lattices: decode a list of particular size which contains correct codeword

- **One-way relay channel**: use list decoder to achieve capacity of physically degraded AWGN relay channel with nested lattices

- **Two-way relay channel**: use list decoder to obtain new achievable rate region and finite gap results for “degraded” cases of two-way relay channel with direct links
Lattice notation

- \(\Lambda = \{ \lambda = G \mathbf{i} : \mathbf{i} \in \mathbb{Z}^n \} \), \(G \) the generator matrix
Lattice notation

- $\Lambda = \{ \lambda = G \mathbf{i} : \mathbf{i} \in \mathbb{Z}^n \}$, G the generator matrix

- lattice quantizer of Λ:
 \[Q(X) = \arg \min_{\lambda \in \Lambda} ||X - \lambda|| \]
Lattice notation

- $\Lambda = \{\lambda = G\, i : i \in \mathbb{Z}^n\}$, G the generator matrix

- **lattice quantizer of Λ:**
 $$Q(X) = \arg\min_{\lambda \in \Lambda} ||X - \lambda||$$

- $x \mod \Lambda := x - Q(x)$
Lattice notation

- \(\Lambda = \{ \lambda = G \mathbf{i} : \mathbf{i} \in \mathbb{Z}^n \} \), \(G \) the generator matrix

- *lattice quantizer* of \(\Lambda \):
 \[
 Q(\mathbf{X}) = \arg \min_{\lambda \in \Lambda} ||\mathbf{X} - \lambda||
 \]

- \(\mathbf{x} \mod \Lambda := \mathbf{x} - Q(\mathbf{x}) \)

- *fundamental region* \(\mathcal{V} := \{ \mathbf{x} : Q(\mathbf{x}) = \mathbf{0} \} \) of volume \(V \)
Lattice notation

- $\Lambda = \{\lambda = G \mathbf{i} : \mathbf{i} \in \mathbb{Z}^n\}$, G the generator matrix

- **lattice quantizer of Λ:**

 $$Q(\mathbf{X}) = \arg\min_{\lambda \in \Lambda} ||\mathbf{X} - \lambda||$$

- $\mathbf{x} \mod \Lambda := \mathbf{x} - Q(\mathbf{x})$

- **fundamental region** $\mathcal{V} := \{\mathbf{x} : Q(\mathbf{x}) = \mathbf{0}\}$ of volume V

- **second moment per dimension of a uniform distribution over \mathcal{V}:**

 $$\sigma^2(\Lambda) := \frac{1}{V} \cdot \frac{1}{n} \int_{\mathcal{V}} ||\mathbf{x}||^2 d\mathbf{x}$$
Nested lattice codes

• Nested lattice pair: $\Lambda \subseteq \Lambda_c$ (Λ is Rogers-good and Poltyrev-good, Λ_c is Poltyrev-good)
Nested lattice codes

- Nested lattice pair: \(\Lambda \subseteq \Lambda_c \) (\(\Lambda \) is Rogers-good and Poltyrev-good, \(\Lambda_c \) is Poltyrev-good)

- The code book \(\mathcal{C} = \{ \Lambda_c \cap \mathcal{V}(\Lambda) \} \) is used to achieve the capacity of AWGN channel

\[\Lambda \subseteq \Lambda_c \]

\[\mathcal{C} = \{ \Lambda_c \cap \mathcal{V}(\Lambda) \} \]

\[[\text{Erez+Zamir, Trans. IT, 2004}] \]
Nested lattice codes

- Nested lattice pair: $\Lambda \subseteq \Lambda_c$ (Λ is Rogers-good and Poltyrev-good, Λ_c is Poltyrev-good)

- The code book $\mathcal{C} = \{\Lambda_c \cap \mathcal{V}(\Lambda)\}$ is used to achieve the capacity of AWGN channel [Erez+Zamir, Trans. IT, 2004]

- Coding rate: $R = \frac{1}{n} \log |\mathcal{C}| = \frac{1}{n} \log \frac{V(\Lambda)}{V(\Lambda_c)}$ arbitrary
Nested lattice chains

- $\Lambda_1 \subseteq \Lambda_2 \subseteq \cdots \subseteq \Lambda_K$ ($\Lambda_1, \Lambda_2 \ldots \Lambda_{K-1}$ are Rogers-good and Poltyrev-good, Λ_K is Poltyrev-good). The nesting rates between any pairs in the chain can attain any arbitrary values as the dimension $n \to \infty$.

[Nam, Chung, Lee, Trans. IT, to appear]
Nested lattice chains

- $\Lambda_1 \subseteq \Lambda_2 \subseteq \cdots \subseteq \Lambda_K$ ($\Lambda_1, \Lambda_2, \ldots, \Lambda_{K-1}$ are Rogers-good and Poltyrev-good, Λ_K is Poltyrev-good). The nesting rates between any pairs in the chain can attain any arbitrary values as the dimension $n \to \infty$.

[Nam, Chung, Lee, Trans. IT, to appear]

- A "good" lattice chain with length 3 is used in our list decoding scheme:

 $\Lambda \subseteq \Lambda_s \subseteq \Lambda_c$

[Image of nested lattice chains]
Lattice list decoder

- IDEA: decode to rather than to
Lattice list decoder

• IDEA: decode to \(\Lambda \subseteq \Lambda_s \subseteq \Lambda_c \) rather than to

• results in a list of codewords
Lattice list decoder

- IDEA: decode to a list rather than to

- results in a list of codewords

- require correct codeword to be in list
Lattice list decoder

• IDEA: decode to \(\Lambda \) rather than to \(\Lambda_s \)

• results in a list of codewords

• require correct codeword to be in list

• how many are in list?
Encoding

• message of rate R over the AWGN channel $Y = X + Z$ subject to the average power constraint P
Encoding

- message of rate R over the AWGN channel $Y = X + Z$ subject to the average power constraint P

- **Encoding:** take $t \in C_{\Lambda, \nu}$ associated with message of rate R and $X = (t - U) \text{ mod } \Lambda$

- U is a dither signal uniformly distributed over ν.
Decoding

\[\Lambda \subseteq \Lambda_s \subseteq \Lambda_c \]
Decoding

\[\Lambda \subseteq \Lambda_s \subseteq \Lambda_c \]

\[S_{\Lambda_s, \Lambda_c}(Y') = \{ \Lambda_c \cap (Y' + \mathcal{N}_s) \} \]

\[\star = Y' \]
Decoding

• Receiver first computes

\[Y' = (\alpha Y + U) \mod \Lambda \]
\[= (t - (1 - \alpha)X + \alpha Z) \mod \Lambda \]
\[= (t + Z') \mod \Lambda \]
Decoding

• Receiver first computes

\[Y' = (\alpha Y + U) \mod \Lambda \]
\[= (t - (1 - \alpha)X + \alpha Z) \mod \Lambda \]
\[= (t + Z') \mod \Lambda \]

• Receiver then decodes the list of codewords \(\hat{t} \):

\[L(\hat{t}) := S_{\mathcal{V}_s,\Lambda_c}(Y') \mod \Lambda \]

\[\mathcal{S}_{\mathcal{V}_s,\Lambda_c}(Y') = \{ \Lambda_c \cap (Y' + \mathcal{V}_s) \} \]

\[\star = Y' \]
Lattice list decoder

- Probability of error for list decoding: \(P_e := \Pr\{t \notin L(\hat{t})\} \)
Lattice list decoder

- Probability of error for list decoding: \(P_e := \Pr\{t \notin L(\hat{t})\} \)

\[
\begin{align*}
\Lambda &\subseteq \Lambda_s \subseteq \Lambda_c \\
S_{\Lambda_s, \Lambda_c}(Y') &= \{\Lambda_c \cap (Y' + \mathcal{V}_s)\} \\
\star &= Y' \\
S_{\Lambda_s, \Lambda_c}(Y') &= \{\Lambda_c \cap (Y' + \mathcal{V}_s)\} \\
Q_{\mathcal{V}_s, \Lambda_c}(Y') &= \bigcup_{\lambda_c \in \Lambda_c} \{\lambda_c | Y' \in (\lambda_c + \mathcal{V}_s)\}
\end{align*}
\]

- easy to count \# in list

Thursday, September 30, 2010
Lattice list decoder

- Probability of error for list decoding: $P_e := \Pr\{t \notin L(\hat{t})\}$

- easy to count # in list
- easy to bound probability of error
Lattice list decoder

• Theorem 1: Using the encoding and decoding scheme defined above, the receiver decodes a list of codewords of size $2^{n(R-C(P/N))}$ with probability of error $P_e \to 0$ as $n \to \infty$
Application I: AWGN degraded relay channel
(Decode and Forward)

\[Y_R = X_1 + Z_R, \quad Z_R \sim \mathcal{N}(0, N_R) \]

Power \(P_R \)
No message, just relay

\[Y_2 = X_1 + X_R + Z_2, \quad Z_2 \sim \mathcal{N}(0, N_2) \]

Degraded if \(Z_2 = Z_R + Z'_2 \)
Application I: AWGN degraded relay channel
(Decode and Forward)

\[Y_R = X_1 + Z_R, \quad Z_R \sim \mathcal{N}(0, N_R) \]

Power \(P_R \)
No message, just relay

\[Y_2 = X_1 + X_R + Z_2, \quad Z_2 \sim \mathcal{N}(0, N_2) \]

Degraded if \(Z_2 = Z_R + Z'_2 \)

- Capacity of degraded AWGN relay channel shown to be

\[
R \leq \max_{0 \leq \alpha \leq 1} \min \left\{ \frac{1}{2} \log \left(1 + \frac{P + P_R + 2\sqrt{\alpha PP_R}}{N + N_R} \right), \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R} \right) \right\}
\]
Application I: AWGN degraded relay channel (Decode and Forward)

- in [Cover, El Gamal, Trans. IT, 1979] proven using:
 - superposition coding
 - Slepian-Wolf partitioning
 - coding for cooperative multiple access channel
 - Block-Markov coding
 - list decoding
 - successive decoding
Application I: AWGN degraded relay channel (Decode and Forward)

- in [Cover, El Gamal, Trans. IT, 1979] proven using:

 - superposition coding
 - Slepian-Wolf partitioning
 - coding for cooperative multiple access channel
 - Block-Markov coding
 - list decoding
 - successive decoding

all using RANDOM codes
Application I: AWGN degraded relay channel (Decode and Forward)

- in [Cover, El Gamal, Trans. IT, 1979] proven using:
 - superposition coding
 - Slepian-Wolf partitioning
 - coding for cooperative multiple access channel
 - Block-Markov coding
 - list decoding
 - successive decoding

 all using RANDOM codes

 can we use NESTED LATTICE codes instead?
Source node (Node 1) sends the superposition of X_1 and X_2.

\[X_1 \leftrightarrow \Lambda_1 \subseteq \Lambda_{s1} \subseteq \Lambda_{c1} \]

\[X_2 \leftrightarrow \Lambda_2 \subseteq \Lambda_{c2} \]

(block Markov coding)
Source node (Node 1) sends the superposition of X_1 and X_2.

Encoding

$X_1 \iff \Lambda_1 \subseteq \Lambda_{s1} \subseteq \Lambda_{c1}$

$X_2 \iff \Lambda_2 \subseteq \Lambda_{c2}$

$E(X_1^2) = \alpha P$

$E(X_2^2) = \bar{\alpha} P$

block Markov coding
Source node (Node 1) sends the superposition of X_1 and X_2

$$E(X_1^2) = \alpha P$$
$$E(X_2^2) = \bar{\alpha} P$$

$$\Lambda_1 \subseteq \Lambda_{s1} \subseteq \Lambda_{c1}$$
$$\sigma^2(\Lambda_1) = \alpha P$$
$$\sigma^2(\Lambda_2) = \bar{\alpha} P$$

(block Markov coding)
Source node (Node 1) sends the superposition of X_1 and X_2

$E(X_1^2) = \alpha P$
$\sigma^2(\Lambda_1) = \alpha P$
List decoding lattice

$E(X_2^2) = \bar{\alpha} P$
$\sigma^2(\Lambda_2) = \bar{\alpha} P$

Relay node (Node R) sends X_R

$X_R = \sqrt{\frac{P_R}{\bar{\alpha} P}} X_2$
$\leftrightarrow \sqrt{\frac{P_R}{\bar{\alpha} P}} \Lambda_2 \subseteq \sqrt{\frac{P_R}{\bar{\alpha} P}} \Lambda_{c2}$

(block Markov coding)
Encoding

Source node (Node 1) sends the superposition of X_1 and X_2

$E(X_1^2) = \alpha P$

$\sigma^2(\Lambda_1) = \alpha P$ List decoding lattice

$E(X_2^2) = \bar{\alpha} P$

$\sigma^2(\Lambda_2) = \bar{\alpha} P$

Relay node (Node R) sends X_R

$X_R = \sqrt{\frac{P_R}{\bar{\alpha} P}} X_2$

$\sigma^2(\sqrt{\frac{P_R}{\bar{\alpha} P}} \Lambda_2) = P_R$

(block Markov coding)
Decoding

- At relay: $Y_R = X_1 + X_2 + Z_R$
Decoding

- At relay: $Y_R = X_1 + X_2 + Z_R \quad R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R}\right)$
Decoding

- At relay: \(Y_R = X_1 + X_2 + Z_R \quad R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R} \right) \)

- At destination:

\[
Y_2 = X_1 + X_2 + X_R + Z_2 \\
= \left(1 + \sqrt{\frac{P_R}{\bar{\alpha} P}} \right) X_2 + X_1 + Z_2
\]
Decoding

• At relay: \(Y_R = X_1 + X_2 + Z_R \) \[R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R} \right) \]

• At destination:

\[
Y_2 = X_1 + X_2 + X_R + Z_2
\]

\[
= \left(1 + \sqrt{\frac{P_R}{\alpha P}} \right) X_2 + X_1 + Z_2
\]

Successive decoding:
Decoding

- At relay: $Y_R = X_1 + X_2 + Z_R \quad R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R}\right)$

- At destination:

$$Y_2 = X_1 + X_2 + X_R + Z_2 = \left(1 + \sqrt{\frac{P_R}{\alpha P}}\right)X_2 + X_1 + Z_2$$

Successive decoding:

Same Slepian-wolf partitioning index (coherent gain)
Decoding

- At relay: $Y_R = X_1 + X_2 + Z_R \quad R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R} \right)$

- At destination:

\[
Y_2 = X_1 + X_2 + X_R + Z_2 = \left(1 + \sqrt{\frac{PR}{\alpha P}} \right) X_2 + X_1 + Z_2
\]

Successive decoding:

Same Slepian-wolf partitioning index (coherent gain)

List decoded
Decoding

- At relay: $Y_R = X_1 + X_2 + Z_R \quad R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R}\right)$

- At destination:

$$Y_2 = X_1 + X_2 + X_R + Z_2 = \left(1 + \sqrt{\frac{P_R}{\alpha P}}\right) X_2 + X_1 + Z_2$$

Successive decoding:

Same Slepian-wolf partitioning index (coherent gain) \quad \rightarrow \quad \text{List decoded}
Decoding

- At relay: \(Y_R = X_1 + X_2 + Z_R \) \[R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R} \right) \]

- At destination:

\[
Y_2 = X_1 + X_2 + X_R + Z_2 \\
= \left(1 + \sqrt{\frac{P_R}{\alpha P}} \right) X_2 + X_1 + Z_2
\]

Successive decoding:

Same Slepian-wolf partitioning index (coherent gain)

List decoded
Decoding

- At relay: \(Y_R = X_1 + X_2 + Z_R \)
 \[R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R}\right) \]

- At destination:

\[
Y_2 = X_1 + X_2 + X_R + Z_2
= \left(1 + \sqrt{\frac{P_R}{\bar{\alpha} P}}\right) X_2 + X_1 + Z_2
\]

Successive decoding:

Same Slepian-wolf partitioning index (coherent gain)

List decoded

Desired message
Decoding

- At relay: $Y_R = X_1 + X_2 + Z_R \quad R < \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R}\right)$

- At destination:

\[Y_2 = X_1 + X_2 + X_R + Z_2 \]
\[= \left(1 + \sqrt{\frac{P_R}{\alpha P}}\right) X_2 + X_1 + Z_2 \]

Successive decoding:

Same Slepian-wolf partitioning index (coherent gain)

List decoded

$R < \frac{1}{2} \log \left(1 + \frac{P + P_R + 2\sqrt{\alpha P P_R}}{N + N_R}\right)$
Application I: AWGN degraded relay channel

- Capacity of degraded AWGN relay channel shown to be

\[R \leq \max_{0 \leq \alpha \leq 1} \min \left\{ \frac{1}{2} \log \left(1 + \frac{P + P_R + 2\sqrt{\alpha P P_R}}{N + N_R} \right), \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R} \right) \right\} \]
Application I: AWGN degraded relay channel

- Capacity of degraded AWGN relay channel shown to be

\[R \leq \max_{0 \leq \alpha \leq 1} \min \left\{ \frac{1}{2} \log \left(1 + \frac{P + P_R + 2\sqrt{\alpha PP_R}}{N + N_R} \right), \frac{1}{2} \log \left(1 + \frac{\alpha P}{N_R} \right) \right\} \]

Thm 2: This can be achieved using **NESTED LATTICE CODES**!
Application 2: two-way relay channel with direct links
Application 2: two-way relay channel with direct links

- achieve to within 1/2 bit/s/Hz gap in absence of direct link
 [Nam, Chung, Lee, Trans. IT, to appear]
Application 2: two-way relay channel with direct links

- achieve to within $1/2 \text{ bit/s/Hz}$ gap in absence of direct link
 [Nam, Chung, Lee, Trans. IT, to appear]

- uses lattice codes to "decode the sum" at the relay, rather than individual messages
Application 2: two-way relay channel with direct links

\[Y_r = X_1 + X_2 + N_R \]

- achieve to within 1/2 bit/s/Hz gap in **absence of direct link**

 [Nam, Chung, Lee, Trans. IT, to appear]

- achieve to within 2 bits/s/Hz gap for special cases **with direct link**

 [Avestimehr, Sezgin, Tse, European Trans. Comm, 2009]

- uses lattice codes to ``decode the sum'' at the relay, rather than individual messages

- uses random codes and quantizers at relay
Application 2: two-way relay channel with direct links
Application 2: two-way relay channel with direct links

\[Y_R = X_1 + X_2 + Z_R, \quad Z_R \sim \mathcal{N}(0, N_R) \]

Power \(P_R \)
No message, just relay

\[Z_1 \sim \mathcal{N}(0, N_1) \]
\[Z_2 \sim \mathcal{N}(0, N_2) \]

Degraded if \(Z_1 = Z_R + Z_1', Z_2 = Z_R + Z_2' \)
Application 2: two-way relay channel with direct links

\[Y_R = X_1 + X_2 + Z_R, \quad Z_R \sim \mathcal{N}(0, N_R) \]

- Power \(P_R \)
- No message, just relay

\[Y_1 = X_1 + X_2 + X_R + Z_1 \quad Y_2 = X_1 + X_2 + X_R + Z_2 \]

\[Z_1 \sim \mathcal{N}(0, N_1) \quad Z_2 \sim \mathcal{N}(0, N_2) \]

Degraded if \(Z_1 = Z_R + Z'_1, \quad Z_2 = Z_R + Z'_2 \)

- we derive a new achievable rate region using nested lattices, with direct link
Application 2: two-way relay channel with direct links

\[Y_R = X_1 + X_2 + Z_R, \quad Z_R \sim \mathcal{N}(0, N_R) \]

No message, just relay

\[Y_1 = X_1 + X_2 + X_R + Z_1 \quad Y_2 = X_1 + X_2 + X_R + Z_2 \]

\[Z_1 \sim \mathcal{N}(0, N_1) \quad Z_2 \sim \mathcal{N}(0, N_2) \]

Degraded if \(Z_1 = Z_R + Z_1', \quad Z_2 = Z_R + Z_2' \)

- we derive a new achievable rate region using nested lattices, with direct link
- this region attains constant gaps for certain degraded channel
Application 2: two-way relay channel with direct links

\[Y_R = X_1 + X_2 + Z_R, \quad Z_R \sim \mathcal{N}(0, N_R) \]

Power \(P_R \)
No message, just relay

\[Y_1 = X_1 + X_2 + X_R + Z_1 \quad Y_2 = X_1 + X_2 + X_R + Z_2 \]

\[Z_1 \sim \mathcal{N}(0, N_1) \quad Z_2 \sim \mathcal{N}(0, N_2) \]

Degraded if \(Z_1 = Z_R + Z'_1, \quad Z_2 = Z_R + Z'_2 \)

• we derive a new achievable rate region using nested lattices, with direct link

• this region attains constant gaps for certain degraded channel
Application 2: two-way relay channel with direct links

- Random binning
 [Xie, CWIT 2007]
 [Kramer, Shamai, ITW 2007]
Application 2: two-way relay channel with direct links

- Random binning
 [Xie, CWIT 2007]
 [Kramer, Shamai, ITW 2007]

- Decoding sum
 [Nam, Chung, Lee Trans. IT to appear]
Application 2: two-way relay channel with direct links

- Random binning
 [Xie, CWIT 2007]
 [Kramer, Shamai, ITW 2007]

\[T = (t_1 + t_2 - Q_2(t_2 + U_2)) \mod \Lambda_1 \]

- Decoding sum
 [Nam, Chung, Lee
 Trans. IT to appear]

- List decoding
 [this work]

\[S_{\mathcal{V}, \Lambda_c} (Y') = \{ \Lambda_c \cap (Y' + \mathcal{V}) \} \]

\(\star = Y' \)
Application 2: two-way relay channel with direct links

- Random binning
 - [Xie, CWIT 2007]
 - [Kramer, Shamai, ITW 2007]

\[w_1, w_2 \]
\[\hat{w}_2, w_1, \hat{w}_1, w_2 \]

- Decoding sum
 - [Nam, Chung, Lee, Trans. IT to appear]

\[\hat{T} = (t_1 + t_2 - Q_2(t_2 + U_2)) \mod \Lambda_1 \]

\[w_1 \leftrightarrow t_1 \]
\[w_2 \leftrightarrow t_2 \]

- List decoding
 - [this work]

\[\Lambda \subseteq \Lambda_c \subseteq \Lambda_e \]
\[S_{\gamma', \Lambda_c} (Y') = \{ \Lambda_c \cap (Y' + \mathcal{V}), \} \]
\[\star = Y' \]
Outline of achievability scheme

- assume WLOG \(P_1 \geq P_2 \)
Outline of achievability scheme

- assume WLOG $P_1 \geq P_2$

$(\Lambda_1, \Lambda_{c1})$

$(block \ Markov\ coding)$
Outline of achievability scheme

- assume WLOG $P_1 \geq P_2$

$w_1 \leftrightarrow t_1 \ (\Lambda_1, \Lambda_{c1}) \ 1 \ 2 \ (\Lambda_2, \Lambda_{c2}) \ w_2 \leftrightarrow t_2$

(block Markov coding)
Outline of achievability scheme

- assume WLOG \(P_1 \geq P_2 \)

- decode \(\hat{T} = (t_1 + t_2 - Q_2(t_2 + U_2)) \mod \Lambda_1 \)

\[
\begin{align*}
\text{block Markov coding}
\end{align*}
\]
Outline of achievability scheme

- assume WLOG $P_1 \geq P_2$
 - decode $\hat{T} = (t_1 + t_2 - Q_2(t_2 + U_2)) \mod \Lambda_1$
 - send bin index of \hat{T} (random code)

$$w_1 \leftrightarrow t_1 \quad (\Lambda_1, \Lambda_{c1})$$
$$w_2 \leftrightarrow t_2 \quad (\Lambda_2, \Lambda_{c2})$$

(block Markov coding)
Outline of achievability scheme

- assume WLOG $P_1 \geq P_2$
 - decode $\hat{T} = (t_1 + t_2 - Q_2(t_2 + U_2)) \mod \Lambda_1$
 - send bin index of \hat{T} (random code)

$$w_1 \leftrightarrow t_1 \quad \left(\Lambda_1, \Lambda_{c1} \right)$$

$$w_2 \leftrightarrow t_2 \quad \left(\Lambda_2, \Lambda_{c2} \right)$$

- decode \hat{w}_2 satisfying:
 - (1) $(x_R(\text{bin index of } \hat{T}), Y_1)$ jointly typical
 - (2) belongs to list decoded from direct link

(block Markov coding)
Outline of achievability scheme

- assume WLOG $P_1 \geq P_2$
 - decode $\hat{T} = (t_1 + t_2 - Q_2(t_2 + U_2)) \mod \Lambda_1$
 - send bin index of \hat{T} (random code)

- $w_1 \leftrightarrow t_1 \ (\Lambda_1, \Lambda_{c1}) \quad \mathbf{1}$
- $w_2 \leftrightarrow t_2 \ (\Lambda_2, \Lambda_{c2}) \quad \mathbf{2}$

- decode \hat{w}_2 satisfying:
 1. $(x_R(\text{bin index of } \hat{T}), Y_1)$ jointly typical
 2. belongs to list decoded from direct link

- decode \hat{w}_1 satisfying:
 1. $(x_R(\text{bin index of } \hat{T}), Y_2)$ jointly typical
 2. belongs to list decoded from direct link

(\textit{block Markov coding})
Outline of achievability scheme

- Relay node: \(Y_R = X_1 + X_2 + Z_R \), decodes \(\hat{T} \):

\[
R_1 < \frac{1}{2} \log \left(\frac{P_1}{P_1 + P_2} + \frac{P_1}{N_R} \right)
\]
\[
R_2 < \frac{1}{2} \log \left(\frac{P_2}{P_1 + P_2} + \frac{P_2}{N_R} \right)
\]
Outline of achievability scheme

- Relay node: \(Y_R = X_1 + X_2 + Z_R \), decodes \(\hat{T} \):
 \[
 R_1 < \frac{1}{2} \log \left(\frac{P_1}{P_1 + P_2} + \frac{P_1}{N_R} \right)

 R_2 < \frac{1}{2} \log \left(\frac{P_2}{P_1 + P_2} + \frac{P_2}{N_R} \right)
 \]

- Node 2: \(Y_2 = X_1 + X_R + Z_2 \), decodes \(\hat{w}_1 \):
 \[
 R_1 < I(X_R; Y_2|X_2) + C(P_1/N_2)

 = \frac{1}{2} \log \left(1 + \frac{P_R}{P_1 + N_2} \right) + \frac{1}{2} \log \left(1 + \frac{P_1}{N_2} \right)

 = \frac{1}{2} \log \left(1 + \frac{P_R + P_2}{N_1} \right)
 \]
Outline of achievability scheme

- Relay node: \(Y_R = X_1 + X_2 + Z_R \), decodes \(\hat{T} \):

\[
R_1 < \frac{1}{2} \log \left(\frac{P_1}{P_1 + P_2} + \frac{P_1}{N_R} \right)
\]

\[
R_2 < \frac{1}{2} \log \left(\frac{P_2}{P_1 + P_2} + \frac{P_2}{N_R} \right)
\]

- Node 2: \(Y_2 = X_1 + X_R + Z_2 \), decodes \(\hat{w}_1 \):

\[
R_1 < I(X_R; Y_2|X_2) + C(P_1/N_2)
\]

\[
= \frac{1}{2} \log \left(1 + \frac{P_R}{P_1 + N_2} \right) + \frac{1}{2} \log \left(1 + \frac{P_1}{N_2} \right)
\]

\[
= \frac{1}{2} \log \left(1 + \frac{P_R + P_2}{N_1} \right)
\]

- Analogous for node 1
• Theorem 3: For the two-way relay channel with direct links, we may achieve:

\[
R_1 \leq \min \left(\left[\frac{1}{2} \log \left(\frac{P_1}{P_1 + P_2} + \frac{P_1}{N_R} \right) \right]^+, \frac{1}{2} \log \left(1 + \frac{P_1 + P_R}{N_2} \right) \right)
\]

\[
R_2 \leq \min \left(\left[\frac{1}{2} \log \left(\frac{P_2}{P_1 + P_2} + \frac{P_2}{N_R} \right) \right]^+, \frac{1}{2} \log \left(1 + \frac{P_2 + P_R}{N_1} \right) \right)
\]
Rate region

- Theorem 3: For the two-way relay channel with direct links, we may achieve:

\[
R_1 \leq \min \left(\left[\frac{1}{2} \log \left(\frac{P_1}{P_1 + P_2 + \frac{P_1}{N_R}} \right) \right]^+, \frac{1}{2} \log \left(1 + \frac{P_1 + P_R}{N_2} \right) \right)
\]

\[
R_2 \leq \min \left(\left[\frac{1}{2} \log \left(\frac{P_2}{P_1 + P_2 + \frac{P_2}{N_R}} \right) \right]^+, \frac{1}{2} \log \left(1 + \frac{P_2 + P_R}{N_1} \right) \right)
\]

- eliminates "MAC"-like constraints at relay
Rate region

• Theorem 3: For the two-way relay channel with direct links, we may achieve:

\[
R_1 \leq \min \left(\left[\frac{1}{2} \log \left(\frac{P_1}{P_1 + P_2 + \frac{P_1}{N_R}} \right) \right]^+, \frac{1}{2} \log \left(1 + \frac{P_1 + P_R}{N_2} \right) \right)
\]

\[
R_2 \leq \min \left(\left[\frac{1}{2} \log \left(\frac{P_2}{P_1 + P_2 + \frac{P_2}{N_R}} \right) \right]^+, \frac{1}{2} \log \left(1 + \frac{P_2 + P_R}{N_1} \right) \right)
\]

• eliminates “MAC”-like constraints at relay

• combines direct and relayed information using lattice list decoder
Finite-gap results

\[Y_R = X_1 + X_2 + Z_R, \quad Z_R \sim \mathcal{N}(0, N_R) \]

\[Y_1 = X_1 + X_2 + X_R + Z_1 \quad Y_2 = X_1 + X_2 + X_R + Z_2 \]

\[Z_1 \sim \mathcal{N}(0, N_1) \quad Z_2 \sim \mathcal{N}(0, N_2) \]

- Two-way physically degraded: \(Z_1 = Z_R + Z'_1 \) AND \(Z_2 = Z_R + Z'_2 \):

\[\frac{1}{2} \text{ bit gap.} \]
Finite-gap results

\[Y_R = X_1 + X_2 + Z_R, \quad Z_R \sim \mathcal{N}(0, N_R) \]

\[Y_1 = X_1 + X_2 + X_R + Z_1 \quad Y_2 = X_1 + X_2 + X_R + Z_2 \]
\[Z_1 \sim \mathcal{N}(0, N_1) \quad Z_2 \sim \mathcal{N}(0, N_2) \]

- Two-way physically degraded: \(Z_1 = Z_R + Z'_1 \) AND \(Z_2 = Z_R + Z'_2 \):
 \[\frac{1}{2} \text{ bit gap.} \]

- Two-way stochastically degraded: \(N_1 \geq N_R \) AND \(N_2 \geq N_R \):
 \[\frac{1}{2} \log 3 \text{ bit gap.} \]
Numerical evaluations

• Comparison with other Decode-and-Forward schemes which utilize the direct

 [Rankov, Wittneben, ISIT 2006]
 [Xie CWIT 2007]
 Cut-set
Conclusions / questions

- Thm 1: lattice list decoder
- Thm 2: lattices achieve the capacity of the physically degraded relay channel
- Thm 3: new achievable rate region for two-way relay channel *with direct links*
Conclusions / questions

• Thm 1: lattice list decoder

• Thm 2: lattices achieve the capacity of the physically degraded relay channel

• Thm 3: new achievable rate region for two-way relay channel with direct links

• Lattice list decoder: other uses?

• Lattices show promise in two-way scenarios: other extensions?
Conclusions / questions

• Thm 1: lattice list decoder

• Thm 2: lattices achieve the capacity of the physically degraded relay channel

• Thm 3: new achievable rate region for two-way relay channel \textit{with direct links}

• Lattice list decoder: other uses?

• Lattices show promise in two-way scenarios: other extensions?

Questions?