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Abstract—This paper proposes a new coding scheme that
combines the advantages of statistical cooperation and algebraic
structure. Consider a multiple-access relay channel wheretwo
transmitters attempt to send the modulo-sum of their finite
field messages to the receiver with the help of the relay. The
transmitters use nested lattice codes to ensure that sums of
codewords are protected against noise and to preserve the modulo
operation of the finite field. We develop a block Markov coding
scheme where the relay recovers the real sum of the codewords
and retransmits it coherently with the two transmitters.

I. I NTRODUCTION

Consider a wireless network comprised of several users that
wish to communicate with each other. In certain scenarios, it
is beneficial to have some of these users act like relays to
help other users recover their desired messages. This strategy
is broadly referred to asphysical-layer cooperation and in-
cludes many powerful schemes such as decode-and-forward,
compress-and-forward, and amplify-and-forward [1]–[8].The
key feature uniting these schemes is that they exploit statistical
dependencies between the observations of the relays and the
destinations to increase the achievable rates. More recently, a
new family of schemes, dubbedphysical-layer network coding,
has been proposed to harness the interference property of
the wireless medium, through the use of codebooks with
appropriate algebraic structure (see [9] for a recent survey).
For instance, compute-and-forward enables relays to recover
equations of the transmitted messages and pass them towards
the destinations [10]. Until recently, these two broad strategies
have been studied in isolation: existing coding schemes exploit
either statistical dependencies or algebraic structure, but not
both. In this paper, we develop a form of relay cooperation
for compute-and-forward that can simultaneously benefit from
statistical cooperation and algebraic structure. The key is that
the relay can directly recover the sum of the codewords and
retransmit it for a coherent gain at the destination. Recent
work has also investigated user cooperation for compute-and-
forward [11]. There, each transmitter exploits the full duplex
nature of the channel to recover other transmitters’ codewords,
which it can then send, along with its own codeword, for a
coherent gain.

II. PROBLEM STATEMENT

We will develop our scheme in the context of a Gaussian
multiple-access relay channel (MARC) where the destination
wishes to decode themodulo-sum of the users’ messages. See

Figure 1 for an illustration. For ease of exposition, we only
consider real-valued channels and symmetric rates.
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Fig. 1. Compute-and-forward over a Gaussian multiple-access relay channel.
The relay helps the receiver decode the modulo-sum of the transmitted
messages.

There are two transmitters indexed byℓ ∈ {1, 2}, each
with a length-k message vectorwℓ, drawn independently and
uniformly over a finite fieldFk

p, wherep is prime. An encoder,
Eℓ : Fk

p → R
n, maps this message into a length-n channel

input vectorxℓ. As usual, the channel inputs must each satisfy
a power constraint,‖xℓ‖2 ≤ nPS .

A relay observes the noisy sum of the the channel inputs,

yR = x1 + x2 + zR (1)

wherezR is i.i.d. Gaussian noise with mean zero and variance
NR. The relay produces its own channel inputxR using its
causal knowledge ofyR. Specifically, letRi : R

i → R denote
the mapping that produces the relay’s channel input for timei,
i.e., theith component ofxR. The relay’s channel input must
satisfy a power constraint,‖xR‖2 ≤ nPR.

The destination observes the noisy sum of the channel inputs
plus the signal from the relay,

yD = x1 + x2 + xR + zD (2)

wherezR is i.i.d. Gaussian noise with mean zero and variance
NR. A decoder,D : Rn → F

k
p, produces an estimatêu =

D(yD) of the modulo-p sum of the messages,u = w1 ⊕w2.
We say a computation rateR is achievable if, for any

ǫ > 0 andn large enough, there exist encoding and decoding
functions, such that the relay can reliably decode the sum,

k

n
log2 p > R− ǫ (3)

P(û 6= u) < ǫ . (4)



The computation capacity is the supremum of all achievable
computation rates.

III. N ESTEDLATTICE CODES

Our achievable scheme relies on the use of nested lattice
codes. For completeness, we provide a brief set of definitions
below and refer interested readers to [10], [12]–[14] for further
details as well as [7], which develops a family of lattice-based
decode-and-forward and compress-and-forward schemes for
classical relay scenarios. A latticeΛ is a discrete subgroup of
R

n with the property that ift1, t2 ∈ Λ thent1+ t2 ∈ Λ. Any
lattice can be described using a real-valued generator matrix
B ∈ R

n,

Λ = BZ
n . (5)

A pair of latticesΛ,ΛFINE is nested ifΛ ⊂ ΛFINE.
With each lattice, we associate a quantizer,QΛ : Rn →

Λ, that maps vectors to the nearest lattice point in Euclidean
distance,

QΛ(x) = argmin
t∈Λ

‖x− t‖ . (6)

The fundamental Voronoi region is the subset of points inR
n

that quantize to the zero vector,V = {x : QΛ(x) = 0}. The
modulo operation returns the quantization error with respect
to the lattice,

[x] mod Λ = x−QΛ(x) , (7)

and satisfies the distributive law,
[

a[x] mod Λ + b[y] mod Λ
]

mod Λ =
[

ax+ by
]

mod Λ ,

for any integer-valued coefficientsa, b ∈ Z.
A nested lattice codeL is created by taking the set of fine

lattice points that fall within the fundamental Voronoi region
of the coarse lattice,L = ΛFINE ∩ V . The rate of such a code
is R = 1

n
log |L|. Erez and Zamir have shown that there exist

nested lattice codes that can approach the capacity of a point-
to-point Gaussian channel [13]. This capacity-achieving lattice
ensemble is created using Construction A, which embeds a
finite field codebook into the reals. Specifically, let be the
finite field generator matrix for a linear code andB be the
real-valued generator matrix for the coarse latticeΛ. The fine
lattice is created as follows:

• Create a finite field generator matrixG ∈ F
n×k
p with

every element drawn in an i.i.d. uniform fashion from
Fp.

• Let C denote the codebook induced byG,

C = {c = Gw : w ∈ Fk
p} .

• Embed this codebook into the unit cube and tile the result
over the integers,

Λ̃FINE = p−1C + Z .

• Rotate by the generator matrix of the coarse lattice to get
the desired fine lattice,

ΛFINE = BΛ̃FINE .

It can be shown [13], [15] that, for appropriatep and k a
lattice drawn from this random ensemble is good for Gaussian
channel coding with probability that goes to1 with n.

For our relaying strategy, we will use a codebook that can
be decoded in two stages by the destination. Following the
framework set forth in [8], we will split our lattice codebook
into two parts, the termed theresolution codebook Lr and
vestigial1 codebook Lv, respectively. These codebooks are
created by splitting the columns of the finite field generator
matrix G = [Gr Gv] and generating latticesΛr andΛv from
each part following the construction outlined above. In effect,
this means that the firstkr symbols of a message are encoded
onto Λr and the lastkv = k − kr symbols of a message are
encoded ontoΛv. The rates ofLr andLv are set toRr and
Rv with Rr +Rv = R.

As shown in [10, Lemma 6], there exist mappings between
finite field vectors and nested lattice codes that preserve lin-
earity. Specifically, there is a one-to-one mappingφ : Fk

p → L
such that for anyw1,w2 ∈ F

k
p,

φ−1
(

[φ(w1) + φ(w2)] mod Λ
)

= w1 ⊕w2 . (8)

This correspondence can be extended to the resolution and
vestigial codebooks [8]. That is, there exist mappingsφr :
F
k
p → Lr andφv : Fk

p → Lv such that for anyw1,w2 ∈ F
k
p,

φr(w1 ⊕w2) = [φr(w1) + φr(w2)] mod Λ (9)

φv(w1 ⊕w2) = [φv(w1) + φv(w2)] mod Λ (10)

[φr(wℓ) + φv(wℓ)] mod Λ = φ(wℓ) . (11)

See Lemma 2 and 3 in [8] for a proof.

IV. COMPUTE-AND-FORWARD

Compute-and-forward is a framework for reliably sending
linear combinations of finite field messages over multi-user
networks [10]. Here, we summarize some of the key results
that will be used as building blocks in our scheme.

It was shown in [10] that the computation rate

R =
1

2
log+

(

1

2
+

PS

ND

)

(12)

is achievable for sending the sum over a two-user multiple-
access channel, i.e., the network in Figure 1 with the relay
turned off. The basic scheme is described below for complete-
ness.

Encoding:Each user maps its message to a lattice codeword,
tℓ = φ(wℓ). It then applies a dither2 that is drawn indepen-
dently and uniformly overV and takesmod Λ to produce its
channel input,xℓ = [tℓ −dℓ] mod Λ. The second moment of
Λ is chosen to meet the power constraintPS .

1This terminology is intended to convey that the vestigial component of
a message is the component “leftover” after the destinationhas decoded the
resolution codeword.

2As in the standard random coding argument, these random dithers can
be replaced with fixed ones after showing that the scheme works with high
probability. That is, no shared randomness is necessary. See [10] for more
details.



Decoding: The receiver scales its observationy by the
minimum-mean squared error (MMSE) coefficientα =

2PS

ND+2PS
, removes the dithers, and takesmod Λ to get

s =
[

αy − d1 − d2

]

mod Λ (13)

=
[

[t1 + t2] mod Λ + (1 − α)(x1 + x2) + αz
]

mod Λ .

Thus, the receiver observes themod Λ sum of the lattice code-
wordsv = [t1 + t2] mod Λ plus an independent noise term
with varianceNEFFEC= (1− α)22PS + α2ND = 2PSND

2PS+ND
. It

then quantizes onto the fine lattices and takesmod Λ to get
its estimate of the lattice codeword sum,

v̂ =
[

QΛFINE(s)
]

mod Λ . (14)

Using the results of [13], if

R <
1

2
log+

(

PS

NEFFEC

)

, (15)

then, for anyǫ > 0 andn large enough,P(v̂ 6= v) < ǫ. Finally,
applying the inverse mapping, we obtain a reliable estimateof
the modulo-sum of the messages,û = φ−1(v̂).

Recently, it was shown that if a receiver can recover the
mod Λ sum of the codewords, it can recover the real sum as
well [16]. This will be an essential ingredient of our scheme,
as it will enable the relay’s transmission to coherently combine
with those from the source terminals. Below, we state a special
case of [16, Lemma 1].

Lemma 1: If a decoder can make an estimatev̂ of v =
[t1 + t2] mod Λ with vanishing probability of error, then it
can also make an estimatêq of the real sum of the channel
inputsq = x1 + x2 with vanishing probability of error.

V. RELAY COOPERATION FORCOMPUTE-AND-FORWARD

We now propose a relay cooperation scheme for compute-
and-forward. The basic premise is that the relay has a better
channel than the destination. To help the destination decode,
the relay recovers the real sum of the codewords and retrans-
mits them. To make this work under a causality constraint,
we employ block Markov coding in the same fashion as the
classical decode-and-forward scheme proposed by Cover and
El Gamal [1]. Our main result is a new achievable region for
reliable computation over the MARC.

Theorem 1: The computation rate

R = max
ρ,γ∈[0,1]

max{R1(ρ, γ), R2(ρ, γ)} (16)

R1(ρ, γ) = min

{

1

2
log+

(

1

2
+

(1− ρ2)γ2PS

NR + (1− ρ2)(1 − γ2)2PS

)

,

1

2
log+

(

1

2
+

ρ2PS + PR

2 + ρ
√
2PSPR

(1− ρ2)2PS +ND

)}

+
1

2
log+

(

1

2
+

(1− ρ2)(1 − γ2)PS

ND

)

(17)

R2(ρ, γ) = min

{

1

2
log+

(

1

2
+

(1 − ρ2)γ2PS

NR

)

,

1

2
log+

(

1

2
+

ρ2PS + PR

2 + ρ
√
2PSPR

(1− ρ2)2PS +ND

)}

+min

{

1

2
log+

(

1

2
+

(1 − ρ2)(1− γ2)PS

NR + (1− ρ2)γ22PS

)

,

1

2
log+

(

1

2
+

(1− ρ2)(1 − γ2)PS

ND

)

}

(18)

is achievable for reliably sending the modulo sum of messages
over the multiple-access relay channel.

Proof: Using the construction in Section III, we draw a
nested lattice codebookL of rateR and scale it so the second
moment of the coarse lattice is equal toPS . This codebook
can be decomposed into resolution and vestigial components,
Lr andLv, with ratesRr andRv.

Following standard block Markov encoding, each trans-
mitter encodesB messagesw[1]

ℓ , . . . ,w
[B]
ℓ each of rateR

over B + 1 blocks of n channel instances each. Assuming
correct decoding, this will yield an overall rate ofB

B+1R,
meaning that for largeB the rate loss associated with the
extra block is negligible. We now describe the encoding and
decoding schemes at block1, block 2 ≤ b ≤ B, and block
B+1. Throughout, it is assumed that the dithersd

[b]
ℓ,r andd[b]

ℓ,v

are drawn independently and uniformly over the fundamental
Voronoi region of the coarse latticeV and made available to
all terminals. As noted earlier, these random dithers can be
replaced with fixed dithers if desired. Letγ andρ be constants
in [0, 1] chosen to maximize the rate expression in the theorem
statement.

Block 1, Encoding:
Each transmitter maps its message to both the resolution

and vestigial lattice codebooks,

t
[1]
ℓ,r = φr(w

[1]
ℓ ) t

[1]
ℓ,v = φv(w

[1]
ℓ ) . (19)

It then applies dithers

x
[1]
ℓ,r = [t

[1]
ℓ,r − d

[1]
ℓ,r] mod Λ x

[1]
ℓ,v = [t

[1]
ℓ,v − d

[1]
ℓ,v] mod Λ .

and transmits the weighted sum of these codewords,

x
[1]
ℓ =

√

1− ρ2
(

γx
[1]
ℓ,r +

√

1− γ2x
[1]
ℓ,v

)

. (20)

The relay sends nothing in this block.



Block 1, Decoding:The relay observes

y
[1]
R =

√

1− ρ2
(

γ
(

x
[1]
1,r + x

[1]
2,r

)

(21)

+
√

1− γ2
(

x
[1]
1,v + x

[1]
2,v

))

+ z
[1]
R . (22)

Since it only needs to recover the sum of the resolution
components, it has two options. First, it can decode the
resolution sum while treating the vestigial sum as noise. In
this case, the effective signal power is(1− ρ2)γ2PS and the
effective noise power isNR + (1− ρ2)(1− γ2)2PS . Thus, it
can recoverx[1]

1,r + x
[1]
2,r if

Rr <
1

2
log+

(

1

2
+

(1− ρ2)γ2PS

NR + (1− ρ2)(1 − γ2)2PS

)

. (23)

Second, the relay can initially decode the vestigial sum
x
[1]
1,v + x

[1]
2,v, subtract it from the received signal, and then

decode the resolution sum without any interference. Using this
method, decoding is successful provided

Rv <
1

2
log+

(

1

2
+

(1− ρ2)(1− γ2)PS

NR + (1 − ρ2)γ22PS

)

(24)

Rr <
1

2
log+

(

1

2
+

(1− ρ2)γ2PS

NR

)

. (25)

The destination does not recover anything yet.
Block 2 ≤ b ≤ B, Encoding:
Each transmitter maps its message to both the resolution

and vestigial lattice codebooks,

t
[b]
ℓ,r = φr(w

[b]
ℓ ) t

[1]
ℓ,v = φv(w

[b]
ℓ ) . (26)

It then applies dithers

x
[b]
ℓ,r = [t

[b]
ℓ,r − d

[b]
ℓ,r] mod Λ x

[b]
ℓ,v = [t

[b]
ℓ,v − d

[b]
ℓ,v] mod Λ .

and transmits the weighted sum of these codewords plus the
resolution codeword from the previous block,

x
[b]
ℓ =

√

1− ρ2
(

γx
[b]
ℓ,r +

√

1− γ2x
[b]
ℓ,v

)

+ ρx
[b−1]
ℓ,r (27)

The relay sends the sum of the resolution codewords from the
previous block, scaled to meet its power constraint,

x
[b]
R =

√

PR

2PS

(

x
[b−1]
1,r + x

[b−1]
2,r

)

. (28)

Block 2 ≤ b ≤ B, Decoding:
The relay observes

y
[b]
R =

√

1− ρ2
(

γ
(

x
[b]
1,r + x

[b]
2,r

)

+
√

1− γ2
(

x
[b]
1,v + x

[b]
2,v

))

+ ρ
(

x
[b−1]
1,r + x

[b−1]
2,r

)

+ z
[b]
R . (29)

Since it already know the resolution sumx[b−1]
1,r +x

[b−1]
2,r from

the previous block, it can remove it and decode the new
resolution sumx[b]

1,r + x
[b]
2,r using the scheme from block1.

The destination observes

y
[b]
D =

√

1− ρ2
(

γ
(

x
[b]
1,r + x

[b]
2,r

)

+
√

1− γ2
(

x
[b]
1,v + x

[b]
2,v

))

+

(

ρ+

√

PR

2PS

)

(

x
[b−1]
1,r + x

[b−1]
2,r

)

+ z
[b]
D . (30)

It first decodes the resolution sumx[b−1]
1,r + x

[b−1]
2,r from y

[b]
D

which is possible if

Rr <
1

2
log+

(

1

2
+

ρ2PS + PR

2 + ρ
√
2PSPR

(1− ρ2)2PS +ND

)

. (31)

Assuming the destination decodes correctly, it subtracts the
resolution sum from its observation to getỹ[b]

D = y
[b]
D −

(ρ +
√

PR

2PS
)(x

[b−1]
1,r + x

[b−1]
2,r ). Next, it takesỹ[b−1]

D from the
previous block and removes the resolution sum to get

ỹ
[b−1]
D − γ

√

1− ρ2
(

x
[b−1]
1,r + x

[b−1]
2,r

)

(32)

=
√

1− ρ2
√

1− γ2
(

x
[b−1]
1,v + x

[b−1]
2,v

)

+ z
[b−1]
D . (33)

From here, it can subtract the vestigial sumx[b−1]
1,v + x

[b−1]
2,v if

Rv <
1

2
log+

(

1

2
+

(1− ρ2)(1 − γ2)PS

ND

)

. (34)

Block B + 1, Encoding:
In the final block, the transmitters and relay coherently send

the sum of the resolution codewords from blockB,

x
[B+1]
ℓ = ρx

[B]
ℓ,r (35)

x
[B+1]
R =

√

PR

2PS

(

x
[B]
1,r + x

[B]
2,r

)

. (36)

Block B + 1, Decoding:
The relay has nothing to decode in this block. The desti-

nation can recoverx[B]
1,r + x

[B]
2,r from its observation under the

same condition as in blocks2 throughB. It then subtracts
this resolution sum from̃y[B]

D to expose the last vestigial sum,
x
[B]
1,v + x

[B]
2,v . Finally, it can recover this sum under the same

condition as in blocks2 throughB. The destination now has
all of the desiredmod Λ sums of lattice codewords (as well
as their real sums). It applies the inverse mappingφ−1 to
eachmod Λ sum to reliably recover its desired message sums,
w

[1]
1 ⊕w

[1]
2 , . . . ,w

[B]
1 ⊕w

[B]
2 . Following standard union bound

arguments, it can be shown that the average probability of
error goes to zero asn increases. Therefore, there must exist
a sequence of good fixed lattice codebooks that achieve the
desired rates.

Remark 1: In the classical decode-and-forward scheme [1],
there is no need to split power between the resolution and
vestigial messages. In fact, when the destination turns to
decode the vestigial message, it can completely remove the
effect of the resolution codeword and obtain the full SNR of
the resulting channel to itself. In our considerations, it is not
clear how to enable the relay to decode the real sum of the
resolution codewords from the real sum of the resolution and
vestigial codewords. To overcome this issue, we have split
power between the two messages, which results in a small
rate loss. Future work will focus on mitigating this effect.

In Figure 2 we plot the achievable rate from Theorem 1.
We compare against two similar schemes. First, we compare
against the basic compute-and-forward scheme from [10], i.e.,
the relay is turned off. Second, we compare against a scheme



presented in [7] in which the destination decodes the messages
individually with the help of the relay. We choosePS = 10dB,
PR = 20dB, ND = 0dB, and we varyNR in order to sweep
out a range of values for the signal-to-noise ratio between the
transmitters and the relay.
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Fig. 2. Achievable rates vs. SNR

For low SNR values, the requirement that the relay must
decode the sum constrains the achievable rate, and the basic
compute-and-forward scheme dominates. For higher SNR val-
ues, the relay can more easily decode, and cooperation nets a
rate gain. Both separate decoding and our proposed approach
outperform non-cooperation. However, since our approach
garners a coherence gain, and since the destination need only
decode the sum of messages rather than the messages indi-
vidually, it outperforms separate decoding for the parameter
values shown.
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