1. **Problem 15.7. Convexity of capacity region of broadcast channel.** Let $C \subseteq \mathbb{R}^2$ be the capacity region of all achievable rate pairs $R = (R_1, R_2)$ for the broadcast channel. Show that C is a convex set by using a time-sharing argument. Specifically, show that if $R^{(1)}$ and $R^{(2)}$ are achievable, $\lambda R^{(1)} + (1 - \lambda)R^{(2)}$ is achievable for $0 \leq \lambda \leq 1$.

Solution:

We have two rate pairs that are achievable: $R^{(1)} = (R_1^{(1)}, R_2^{(1)})$ and $R^{(2)} = (R_1^{(2)}, R_2^{(2)})$ for which, we have two sequences of codes: $((2^nR_1^{(1)}, 2^nR_2^{(1)}), n)$ and $((2^nR_1^{(2)}, 2^nR_2^{(2)}), n)$. Like it is done in the proof of Theorem 15.3.2 for the case of the multiple-access channel in the textbook, here we can apply a similar argument and construct a third codebook of length n at a rate $\lambda R^{(1)} + (1 - \lambda)R^{(2)}$ using the first codebook for the first λn symbols, and the second codebook for the last $(1 - \lambda)n$.

We have that the number of X_1 codewords for the new code is given by:

$$2^n\lambda R_1^{(1)} 2^n(1-\lambda)R_1^{(2)} = 2^n(\lambda R_1^{(1)} + (1-\lambda)R_1^{(2)})$$

And the number of X_2 codewords for the new code is given by:

$$2^n\lambda R_2^{(1)} 2^n(1-\lambda)R_2^{(2)} = 2^n(\lambda R_2^{(1)} + (1-\lambda)R_2^{(2)})$$

So, we have obtained a rate: $\lambda R^{(1)} + (1 - \lambda)R^{(2)}$. Recalling that the overall probability of error is less that the sum of the probabilities of error for each of the segments:

$$P_e^{(n)} \leq P_e^{(\lambda n)}(1) + P_e^{((1-\lambda)n)}(2)$$

We see that the probability of error goes to 0 as $n \to \infty$, hence the rate is achievable.
2. **Problem 15.11.** Converse for the degraded broadcast channel. The following chain of inequalities proves the converse for the degraded discrete memoryless broadcast channel. Provide reasons for each of the labeled inequalities.

Setup for converse for degraded broadcast channel capacity:

\[(W_1, W_2)_{\text{indep}} \rightarrow X^n(W_1, W_2) \rightarrow Y_1^n \rightarrow Y_2^n\]

- **Encoding:** \(f_n : 2^{nR_1} \times 2^{nR_2} \rightarrow X^n\)
- **Decoding:** \(g_n : Y_1^n \rightarrow 2^{nR_1}, h_n : Y_2^n \rightarrow 2^{nR_2}\). Let \(U_i = (W_2, Y_i^{i-1})\).

\[
nR_2 \leq_{\text{Fano}} I(W_2; Y_2^n) \leq \sum_{i=1}^{n} I(W_2; Y_i^{i-1}) \leq \sum_{i} (H(Y_i^{i-1}) - H(Y_i^{i-1} | W_2)) \leq \sum_{i} (H(Y_i^{i-1}) - H(Y_i^{i-1} | W_2, Y_1^{i-1}, Y_2^{i-1})) = \sum_{i} I(U_i; Y_2)
\]

Solution:

Reasons for each of the labeled inequalities:

(a) is given by the Chain rule.

(b) corresponds to the definition of conditional mutual information.

(c) conditioning reduces entropy.

(d) since \(Y_2^i\) is conditionally independent of \(Y_2^{i-1}\) given \(Y_1^{i-1}\).

(e) since \(U_i = (W_2, Y_i^{i-1})\), we can apply the identity \(I(X; Y) = H(Y) - H(Y|X)\).

Continuation of converse: Give reasons for the labeled inequalities:

\[
nR_1 \leq_{\text{Fano}} I(W_1; Y_1^n) \leq \sum_{i=1}^{n} I(W_1; Y_1^n | W_2) \leq \sum_{i} I(W_1; Y_1^n | Y_1^{i-1}, Y_2) = \sum_{i=1}^{n} I(X_i; Y_1 | U_i)
\]
Solution:
Reasons for each of the labeled inequalities:

(f) can be obtained by using the chain rule for mutual information, and because of the non-negative
tivity of the mutual information:

\[I(W_1; W_2 | Y^n_1) \geq 0 \]

(12)

\[I(W_1; Y^n_1, W_2) = I(W_1; Y^n_1) + I(W_1; W_2 | Y^n_1) \]

(13)

(g) can be obtained by using the chain rule for mutual information, and since

\[I(W_1; W_2) = 0 \]

because of the independence between

\[W_1 \text{ and } W_2. \]

(14)

\[I(W_1; Y^n_1, W_2) = I(W_1; W_2) + I(W_1; Y^n_1 | W_2) \]

(15)

(h) corresponds to the chain rule of mutual information.

(i) is the data processing inequality and the definition of \(U_i = (W_2, Y^{i-1}) \).

Now let \(Q \) be a time-sharing random variable with \(Pr(Q = i) = 1/n, i = 1, 2, \ldots, n \).

Justify the following:

\[R_1 \leq I(X_Q; Y_{1Q} | U_Q, Q), \]

\[R_2 \leq I(U_Q; Y_{2Q} | Q) \]

(16)

(17)

for some distribution \(p(q)p(u|q)p(x|u,q)p(y_1, y_2| x) \).

Solution:

For this part we can use a similar analysis like the one given in the textbook (pp.540-542) for

the proof of the converse of the Multiple-Access channel. Then:

\[nR_1 = (i) \sum_{i=1}^{n} I(X_i; Y_{1i} | U_i) \]

(18)

We can write:

\[R_1 \leq \frac{1}{n} \sum_{i=1}^{n} I(X_i; Y_{1i} | U_i) \]

(19)

\[\leq \frac{1}{n} \sum_{i=1}^{n} I(X_Q; Y_{1Q} | U_Q, Q = i) \]

(20)

\[\leq I(X_Q; Y_{1Q} | U_Q, Q) \]

(21)

For \(R_2 \) we have:

\[nR_2 = (e) \sum_{i} I(U_i; Y_{2i}) \]

(22)
We can write:

\[R_2 \leq \frac{1}{n} \sum_i I(U_i; Y_{2i}) \tag{23} \]
\[\leq \frac{1}{n} \sum_i I(U_q; Y_{2q}|Q = i) \tag{24} \]
\[\leq \sum_i I(U_Q; Y_{2Q}|Q) \tag{25} \]

By appropriately redefining \(U \), argue that this region is equal to the convex closure of regions of the form

\[R_1 \leq I(X; Y_1|U), \tag{26} \]
\[R_2 \leq I(U; Y_2) \tag{27} \]

for some joint distribution \(p(u)p(x|u)p(y_1, y_2|x) \).

Solution:
From the previous part we have:

\[R_1 \leq I(X_Q; Y_{1Q}|U_Q, Q) \tag{28} \]
\[R_2 \leq I(U_Q; Y_{2Q}|Q) \tag{29} \]

So we can define a new set of random variables whose distributions depend on \(Q \): \(X = X_Q, \ Y_1 = Y_{1Q}, \ Y_2 = Y_{2Q} \) and \(U = (U_Q, Q) \), such that the previous inequalities can be re-written as:

\[R_1 \leq I(X_Q; Y_{1Q}|U_Q, Q) \tag{30} \]
\[\leq I(X; Y_1|U) \tag{31} \]
\[R_2 \leq I(U_Q; Y_{2Q}|Q) \tag{32} \]
\[\leq I(U_Q, Q; Y_{2Q}) - I(Q; Y_{2Q}) \tag{33} \]
\[\leq I(U; Y_2) \tag{34} \]
3. **Problem 15.16. Multiple-access channel.** Let the output Y of a multiple-access channel be given by:

$$Y = X_1 + sgn(X_2)$$

where X_1, X_2 are both real and power limited,

$$E(X_1^2) \leq P_1$$

$$E(X_2^2) \leq P_2$$

and

$$sgn(x) = \begin{cases} 1, & x > 0, \\ -1, & x \leq 0 \end{cases}$$

Note that there is interference but no noise in this channel.

(a) **Find the capacity region.**

For this problem we can use an auxiliary random variable defined as $\theta = sgn(X_2)$ such that channel becomes: $Y = X_1 + \theta$. Here we have two random variables. In the particular case of θ, it that can take on only two values -1 and $+1$ depending on the value of X_2. So, initially we can set $X_1 = 0$ such that the channel becomes $Y = \theta$, and given the binary nature of θ, we see that the maximum rate R_2 is limited by 1. We can also use the well known expression for the capacity region for the rate R_2 in the multiple-access channel:

$$R_2 \leq I(\theta; Y|X_1)$$

$$\leq H(Y|X_1) - H(Y|\theta, X_1)$$

$$\leq H(X_1 + \theta|X_1)$$

$$\leq H(\theta)$$

$$\leq 1$$

On the other hand, by fixing X_2 for example to any positive value (under the power constraint limit), for example $X_2 = \sqrt{P_2}$ we obtain $\theta = 1$, and the channel becomes $Y = X_1 + 1$. We can see that subtracting 1 from Y is enough to recover X_1 which allows us to transmit as much information as we want yielding an infinite bound for $R_1 \leq \infty$. Hence $R_1 + R_2 \leq \infty$.

(b) **Describe a coding scheme that achieves the capacity region.**

Since we can transmit an infinite rate R_1, we can use one of those bits to encode the information of X_2 since $R_2 \leq 1$. This scheme presents an achievable rate pair $(R_1 = \infty, R_2 = 1)$ recalling that we have to respect the power constraints for both random variables, $E[X_1] \leq \sqrt{P_1}$ and $E[X_2] \leq \sqrt{P_2}$.

5
4. **Problem 15.19. SlepianWolf.** Two senders know random variables U_1 and U_2, respectively. Let the random variables (U_1, U_2) have the following joint distribution:

<table>
<thead>
<tr>
<th>$U_1 \backslash U_2$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>\cdots</th>
<th>$m-1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>α</td>
<td>$\frac{\beta}{m-1}$</td>
<td>$\frac{\beta}{m-1}$</td>
<td>\cdots</td>
<td>$\frac{\beta}{m-1}$</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{\gamma}{m-1}$</td>
<td>0</td>
<td>0</td>
<td>\cdots</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{\gamma}{m-1}$</td>
<td>0</td>
<td>0</td>
<td>\cdots</td>
<td>0</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\cdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$m-1$</td>
<td>$\frac{\gamma}{m-1}$</td>
<td>0</td>
<td>0</td>
<td>\cdots</td>
<td>0</td>
</tr>
</tbody>
</table>

where $\alpha + \beta + \gamma = 1$. Find the region of rates (R_1, R_2) that would allow a common receiver to decode both random variables reliably.

Solution:

From **Theorem 15.4.1** in the textbook, we know that the achievable region for the Slepian-Wolf will be given by:

$$R_1 \geq H(U_1|U_2)$$ \hspace{1cm} (40)

$$R_2 \geq H(U_2|U_1)$$ \hspace{1cm} (41)

$$R_1 + R_2 \geq H(U_1, U_2)$$ \hspace{1cm} (42)

First we compute the marginal distributions for U_1 and U_2 as follows:

$$p(u_1) = \{\alpha + \beta, \frac{\gamma}{m-1}, \frac{\gamma}{m-1}, \cdots, \frac{\gamma}{m-1}(\text{times})\}$$ \hspace{1cm} (43)

$$p(u_2) = \{\alpha + \gamma, \frac{\beta}{m-1}, \frac{\beta}{m-1}, \cdots, \frac{\beta}{m-1}(\text{times})\}$$ \hspace{1cm} (44)
Now the regions are given by:

\[R_1 \geq H(U_1|U_2) \]
\[\geq \sum_{i=0}^{m-1} P(U_2 = i) H(U_1|U_2 = i) \]
\[\geq P(U_2 = 0) H(U_1|U_2 = 0) + \sum_{i=1}^{m-1} P(U_2 = i) H(U_1|U_2 = i) \]
\[\geq (\alpha + \gamma) H \left(\frac{\alpha}{\alpha + \gamma}, \frac{\gamma}{\alpha + \gamma}, \frac{\gamma}{\alpha + \gamma}, \ldots, \frac{\gamma}{\alpha + \gamma} \right) \]
\[\sum_{i=1}^{m-1} P(U_2 = i) H(U_1|U_2 = i) = 0. \]

Since, \(\sum_{i=1}^{m-1} P(U_2 = i) H(U_1|U_2 = i) = 0. \)

Similarly we can obtain \(R_2 \) as follows:

\[R_2 \geq H(U_2|U_1) \]
\[\geq \sum_{i=0}^{m-1} P(U_1 = i) H(U_2|U_1 = i) \]
\[\geq P(U_1 = 0) H(U_2|U_1 = 0) + \sum_{i=1}^{m-1} P(U_1 = i) H(U_2|U_1 = i) \]
\[\geq (\alpha + \beta) H \left(\frac{\alpha}{\alpha + \beta}, \frac{\beta}{\alpha + \beta}, \frac{\beta}{\alpha + \beta}, \ldots, \frac{\beta}{\alpha + \beta} \right) \]
\[\sum_{i=1}^{m-1} P(U_1 = i) H(U_2|U_1 = i) = 0. \]

Since, \(\sum_{i=1}^{m-1} P(U_1 = i) H(U_2|U_1 = i) = 0. \)

\[R_1 + R_2 \geq H(U_1, U_2) \]
\[\geq H \left(\frac{\alpha}{m-1}, \frac{\gamma}{m-1}, \ldots, \frac{\gamma}{m-1}, \frac{\beta}{m-1}, \frac{\beta}{m-1}, \ldots, \frac{\beta}{m-1} \right) \]
\[\geq -\alpha \log_2 (\alpha) - \gamma \log_2 \left(\frac{\gamma}{m-1} \right) - \beta \log_2 \left(\frac{\beta}{m-1} \right) \]
\[\geq -\alpha \log_2 (\alpha) - \gamma \log_2 (\gamma) - \beta \log_2 (\beta) + (\gamma + \beta) \log_2 (m-1) \]
\[\geq H(\alpha, \beta, \gamma) + (\gamma + \beta) \log_2 (m-1) \]
5. **Problem 15.30. Parallel Gaussian channels from a mobile telephone.** Assume that a sender X is sending to two fixed base stations. Assume that the sender sends a signal X that is constrained to have average power P. Assume that the two base stations receive signals Y_1 and Y_2, where

$$Y_1 = \alpha_1 X + Z_1$$
$$Y_2 = \alpha_2 X + Z_2,$$

where $Z_i \sim \mathcal{N}(0, N_i)$, $Z_2 \sim \mathcal{N}(0, N_2)$, and Z_1 and Z_2 are independent. We will assume the α’s are constant over a transmitted block.

(a) Assuming that both signals Y_1 and Y_2 are available at a common decoder $Y = (Y_1, Y_2)$, what is the capacity of the channel from the sender to the common receiver?

We can consider this problem as having two parallel Gaussian channels with inputs $\alpha_1 X, \alpha_2 X$ and corresponding outputs given by Y_1, Y_2. Since we have the power constraint P in the input X.

So we have: $Y = \begin{bmatrix} Y_1 = \alpha_1 X + Z_1 \\ Y_2 = \alpha_2 X + Z_2 \end{bmatrix}$

We know the capacity is given by: $C = \max_{p(X)} I(X; Y)$

Since we know that the output is Gaussian the mutual information is maximized by a Gaussian input for $p(X)$ so that $X \sim \mathcal{N}(0, P)$. Hence we have:

$$X = \begin{bmatrix} \alpha_1 X \sim \mathcal{N}(0, \alpha_1^2 P) \\ \alpha_2 X \sim \mathcal{N}(0, \alpha_2^2 P) \end{bmatrix}$$

In order to compute the capacity we need the determinant $|K_Y| = |K_X + K_Z|$. Since we have independent noises we have:

$$K_Z = \begin{bmatrix} N_1 & 0 \\ 0 & N_2 \end{bmatrix}$$

$$K_X = \begin{bmatrix} \alpha_1^2 P & COV[\alpha_1 X \alpha_2 X] \\ COV[\alpha_1 X \alpha_2 X] & \alpha_2^2 P \end{bmatrix}$$

$$COV[\alpha_1 X \alpha_2 X] = E[\alpha_1 \alpha_2 X^2] = \alpha_1 \alpha_2 P$$

(58)

Then,

$$K_X = \begin{bmatrix} \alpha_1^2 P & \alpha_1 \alpha_2 P \\ \alpha_1 \alpha_2 P & \alpha_2^2 P \end{bmatrix}$$

(59)
\(|K_Y| = |K_X + K_Z|\)
\[\begin{align*}
\text{(60)} & \quad = \left[\begin{array}{cc} \alpha_1^2 P & \alpha_1 \alpha_2 P \\ \alpha_1 \alpha_2 P & \alpha_2^2 P \end{array} \right] + \left[\begin{array}{cc} N_1 & 0 \\ 0 & N_2 \end{array} \right] \\
\text{(61)} & \quad = \left[\begin{array}{cc} \alpha_1^2 P & \alpha_1 \alpha_2 P + N_1 \\ \alpha_1 \alpha_2 P & \alpha_2^2 P + N_2 \end{array} \right] \\
\text{(62)} & \quad = (\alpha_1^2 P + N_1)(\alpha_2^2 P + N_2) - \alpha_1^2 \alpha_2^2 P^2 \\
\text{(63)} & \quad = \alpha_1^2 \alpha_2^2 P^2 + \alpha_1^2 PN_2 + \alpha_2^2 PN_1 + N_1 N_2 - \alpha_1^2 \alpha_2^2 P^2 \\
\text{(64)} & \quad = (\alpha_1^2 PN_2 + \alpha_2^2 PN_1 + N_1 N_2) \\
\text{(65)} & \quad = (\alpha_1^2 PN_2 + \alpha_2^2 PN_1 + N_1 N_2)
\end{align*}\]

To find the capacity of a set of two parallel Gaussian channels we have:
\[C = \frac{1}{2} \log_2 \left(\frac{|K_Y|}{|K_Z|} \right)\]
\[\text{(66)} \]
\[= \frac{1}{2} \log_2 \left(\frac{\alpha_1^2 PN_2 + \alpha_2^2 PN_1 + N_1 N_2}{N_1 N_2} \right)\]
\[\text{(67)}\]
\[= \frac{1}{2} \log_2 \left(1 + \frac{\alpha_1^2 PN_2 + \alpha_2^2 PN_1}{N_1 N_2} \right)\]
\[\text{(68)}\]

(b) If, instead, the two receivers \(Y_1\) and \(Y_2\) each decode their signals independently, this becomes a broadcast channel. Let \(R_1\) be the rate to base station 1 and \(R_2\) be the rate to base station 2. Find the capacity region of this channel.

Here we have a sender with power \(P\) and two receivers, with corresponding noises \(N_1\) and \(N_2\). From the textbook, we have that the channel is modeled as: \(Y_1 = X + Z_1\) and \(Y_2 = X + Z_2\) for two arbitrary correlated Gaussian random variables \(Z_1 \sim \mathcal{N}(0,N_1)\) and \(Z_2 \sim \mathcal{N}(0,N_2)\). Then for a Gaussian broadcast channel we can use the expression given in the textbook for the region in: Eq.(15.11) and Eq.(15.12) for a given \(0 \leq \lambda \leq 1\). Assuming without loss of generality that \(N_1 < N_2\):

\[R_1 \leq C \left(\frac{\lambda P}{N_1} \right)\]
\[\text{(69)}\]
\[R_2 \leq C \left(\frac{(1 - \lambda) P}{\lambda P + N_2} \right)\]
\[\text{(70)}\]

So, for this case we have:

\[R_1 \leq \frac{1}{2} \log_2 \left(1 + \frac{\lambda \alpha_1^2 P}{N_1} \right)\]
\[\text{(71)}\]
\[R_2 \leq \frac{1}{2} \log_2 \left(1 + \frac{(1 - \lambda) \alpha_2^2 P}{\lambda \alpha_1^2 P + N_2} \right)\]
\[\text{(72)}\]