NAME:

- This exam has 4 questions.
- You will be given the full class time: 75 minutes minutes.
- You may use the 2 course textbooks.
- No calculators are permitted.
- No talking, passing notes, copying (and all other forms of cheating) is permitted.
- Make sure you explain your answers in a way that illustrates your understanding of the problem. Ideas are important, not just the calculation.
- Partial marks will be given.
- If something has been proven in class or in the book feel free to cite and use the result without a re-derivation.
1. Suppose we observe a random N-dimensional vector \mathbf{x} (column vector) whose components are independent, identically distributed Gaussian random variables $\mathcal{N}(\mu, \sigma^2)$.

(a) Suppose μ is unknown but σ^2 is known (we know the variance but not the mean).

- Does an efficient estimator exist?
- Find the maximum likelihood (ML) estimate of μ.
- Evaluate the bias and the variance of the ML estimate.

(b) Suppose μ is known but σ^2 is not (we know the mean but not the variance).

- Does an efficient estimator exist?
- Find the maximum likelihood (ML) estimate of σ^2.
- Evaluate the bias and the variance of the ML estimate.

(b) Suppose both μ and σ^2 are unknown.

- Find the maximum likelihood (ML) estimate of the vector of unknown parameters $[\mu \ \sigma^2]^T$.
- Evaluate the bias of the ML estimate and compare with parts (a) and (b).
2. Suppose we toss a coin N independent times, where the probability of seeing a heads is θ (and hence the probability of seeing a tails is $(1-\theta)$), an unknown parameter to be estimated. The outcomes of the coin flips are given by

$$x(n) = \begin{cases}
1 & \text{if the } n\text{-th outcome is heads} \\
0 & \text{if the } n\text{-th outcome is tails}
\end{cases}, \quad n = 0, 1, \cdots N - 1$$

(a) Find the density which relates the unknown parameter θ to our observations $x = [x(0), x(1), \cdots, x(N-1)]^T$, i.e. $p(x; \theta) = \cdots$. *HINT: the probability of a particular x depends on the number of heads and tails in x, try to use the fact that $x(n)$ is 1 for heads and 0 for tails to express this.*

(b) Find a sufficient statistic (it exists!) for the estimation of the parameter θ.

(c) Assuming the sufficient statistic you found in (b) is complete, find an MVUE of θ.

(d) Find an ML estimator of θ. *HINT: consider $\ln p(x; \theta)$.*

(e) Find the Cramer-Rao bound for any estimator of θ.

3. I observe data \(x(n) = A + Bn + n^2 + w(n) \) for \(n = 0, 1, \cdots, N - 1 \), from which I wish to estimate the parameters \(A, B \). I know the following about the noise \(w = [w(0), w(1), \cdots, w(N - 1)]^T \):

\[
E[w] = 0, \quad E[ww^T] = C
\]

(a) If the noise is Gaussian, determine whether an MVUE exists. If so what is it? If not, find a reasonable estimator for \(A \) and \(B \) and explain why it’s reasonable.

(b) If the noise is of unknown density, determine whether an MVUE exists. If so what is it? If not, find a reasonable estimator for \(A \) and \(B \) and explain why it’s reasonable.
4. In a binary communications system, message $m = 0$ and $m = 1$ occur with prior probabilities $p_0 = 1/4$ and $p_1 = 3/4$ respectively. Suppose that we observe $x = m + n$, where n is noise whose distribution is as shown in the Figure (uniform on $[-3/4, 3/4]$). n is also independent of the message m.

(a) Find the minimum probability of error detector and compute the associated probability of error.

(b) Suppose the receiver does not know the prior probabilities so it decides to use a maximum likelihood detector. Find the ML detector and the associated probability of error. Is the ML detector unique? Justify your answer.