Protocols

Prof. Sloan's Slides
Passwords can be considered as part of a (simple) protocol.

But fancier things, or both principals devices, definitely require protocol

E.g., Key fob–car; IFF system
Protocols

- A set of rules for how ≥2 principals do something, typically over public communication channel
 - E.g., authenticate one to another; mutually authenticate; vote so all agree on outcome but votes are secret; commit to a value

- Must of course be specified precisely
- Often very delicate; can break if explicit/implicit assumptions don’t hold, or protocol is flat-out breakable.
Two parties can have secure communication by using cryptography with shared key

But must have pre-established key, key distribution, or public-key crypto

Nonce “number used once”—can generate arbitrary random number

Can generate very crudely synched timestamps
Password Protocol

- General notation: Alice (A) and Bob (B) share a secret K_{ab}.

- **Password protocol:**
 - $B \rightarrow A: K_{ab}$

- Notation: Lines have two parts (split by colon): 1st specifies principals sending and receiving; second part gives the message sent.
Example: Simple Challenge and response

- Car engine E authenticating smart key fob transponder T once key is inserted into ignition

- Two steps:
 1. E sends T a nonce N
 2. T sends back (T, N) encrypted with their shared key
Protocol Notation

- Putting things in brackets with a key subscript means encrypted with that key:
 - E.g., $T \rightarrow E : \{T, N\}_{K_{ET}}$ means “T sends to E T & N encrypted with E and T’s shared key”.

- Simple Challenge-response becomes:

 $E \rightarrow T : N$

 $T \rightarrow E : \{T, N\}_{K_{ET}}$
Assumption needed for security

- Nonce must be *unpredictable* pseudorandom number; not just fresh number never used before, such as the date, or next in sequence 1,2,3,....

- Otherwise, car thief can figure out what next challenge to key fob will be, and ask the key fob himself as owner walks away from the car.

 - This would work even if fob was checking the newness of the nonce! (Unlikely)
Man-in-the middle attacks

- Say E allowed fob transponder T to transmit request *without* being inserted by sending “Please”
 - Crook sends “Please” to E, gets back challenge N, sends N to T; T sends proper response to crook thinking crook is E; crook gives this response to E.
 - Perhaps unreasonable for ignition key, but how about garage-door remote?
- Many protocols can be broken this way.
Mutual Challenge Response

\[A \rightarrow B : N_a \]

\[B \rightarrow A : \{N_a, N_b\}_{K_{ab}} \]

\[A \rightarrow B : N_b \]
Famous Protocol: Needham-Schroeder

- Key distribution protocol from the late 1970s.
- Parties are arbitrary pool of principals and trusted key server S. Allows any one principal A to request S to give a new session key for use by A and B.
- I.e., starts by A telling S that she wants a new session key to communicate with B.
- Each principal has unique shared key with S; denote shared key of A and S by K_{AS}
Needham-Schroeder Protocol

\[A \rightarrow S : \quad A, B, N_A \]
\[S \rightarrow A : \quad \{N_A, B, K_{AB}, \{K_{AB}, A\}_K_{BS}\}_K_{AS} \]
\[A \rightarrow B : \quad \{K_{AB}, A\}_{K_{BS}} \]
\[B \rightarrow A : \quad \{N_B\}_{K_{AB}} \]
\[A \rightarrow B : \quad \{N_B - 1\}_{K_{AB}} \]
Problem with N–S

- Anybody who steals Alice’s key with Sam (K_{AS}) can impersonate Alice to 3rd parties!
- Is this okay?
- Probably not today, but really it’s all about what assumptions you make.
- (Using timestamp for nonce would fix this problem.)