Authentication, Passwords

Robert H. Sloan
authenticate |ˈʌθəntɪˌkæt|

verb [trans.]
prove or show (something) to be true or genuine: *they were invited to authenticate artifacts from the Italian Renaissance.*

• [intrans.]
Computing (of a user or process) have one's identity verified.

DERIVATIVES
*authentication |ˈʌθəntɪˌkeɪʃən| noun
authenticator |-ˌkætər| noun

ORIGIN early 17th cent.: from medieval Latin *authenticat-‘established as valid,’* from the verb *authenticate,* from late Latin *authenticus ‘genuine’.*
Authentication is key

Privacy (i.e., confidentiality) and anonymity are important for our social, business well being, but **authentication is essential for survival**.

- Who and what to trust and not to trust!
- Human–Human and Human–physical world interactions: sight, sound, smell, observation of body language, etc.
Hog dog!

- Say you want a Chicago-style hot dog
- Maybe you go to Carm’s
- For sure, authentication is key...
Why a hot dog?

What’s the point of the story of getting a Chicago-style hot dog?

Simple: Human-Human authentication is (relatively) easy

The hard cases are:

- Human–Computer System across network
- Computer System–Computer System
Protocols

- Passwords are most common way to authenticate human to computer system;
 - Can be considered part of (simple) protocol.

- But fancier things, or both principals devices, definitely require protocol
 - E.g., Key fob–car; IFF system
 - More on protocols later.
User authentication

- User authentication is absolutely crucial
- If you can impersonate someone else (be authenticated as them), you can do anything they can do
- If you can impersonate anyone (totally breaking authentication), you can do (almost) anything on the computer
- Usually hard part of taking over a computer is getting in as any one legitimate user
Identification, authentication

- Identification is subject (recall subject = physical person per Anderson) claiming to be a specific identity
- Authentication = process of validating that subject is who she claims to be.
3 Ways to Authenticate

- Authentication is normally done by one or more of:
 1. What you know (typically a password)
 2. What you have (typically a chip/card of some sort)
 3. What you are (biometrics)

- All of these can fail!
Must balance Errors

Since authentication errors, must balance:
- False Acceptance Rate (FAR) (fraud)
- False Rejection Rate (FRR) (insult)

Rule of thumb: choose setting where these two are equal ("Crossover Error Rate") but depends on what is being authenticated.
Passwords

- Most commonly used, cheapest, and clearly insecure these days
- Problem is clash of security requirements versus human capability
 - Psychologists tell us humans can’t remember infrequently used, frequently changed, many similar items and recall much harder than recognition.
Problems with passwords

- Users may disclose them to third parties: phishing, sharing with friend
- Too hard to remember and either
 - Forgotten
 - Written down
- Maybe be entered inaccurately
- Common thread: cog. psych. issues
Passwords (cont.)

- Dictionaries have \(< 2^{18} \) entries.

Common improvements

- Restrict rate at which passwords can be retried
- Monitor failed logins
- Suggest recipes for difficult to guess choices (entire phrase, pass phrase initials)
- Compare with directories and published lists

Requirements:
Classic Password desiderata

- Make them hard to guess: No words in dictionary, no personal info (Birth date, SSN of you or family)
- Use ≥ 1 digit/punctuation mark & Mixed Case & at least 6 (8?) chars long
- Do not reuse
 - Else distinct security protocols become entwined!
- Memorize; never write them down
- Change periodically
Guideline problem

- Password guidelines of previous slide are impossible to carry out
- Nobody can memorize that many distinct high-quality passwords
 - Typical person who does a lot online has 50–150 web accounts. (I have about 130.)
- I know Turing Award winners in crypto/security who do not follow these guidelines!
- Passphrases may be help some
Inside an organization

- Want an aggressive enough password policy to ward off dictionary attacks (try all from list of common passwords)

- Key question is “Can you convince your users not to reuse their passwords elsewhere?”

- Helps if you can give them Single Sign-On (SSO)
Password attacks

- Dictionary/Brute Force attacks: Hence length & character diversity requirements
 - And retry counters, but must balance with difficulty people have entering passwords

- Eavesdropping attacks (including “shoulder surfing”): Be careful when entering in person; design systems never to transmit passwords in clear over LAN

- Bogus machines/Spoofing: Need a trusted path
And the attack of the moment

- Phishing: Trying to get you to enter your user name and password somewhere you shouldn’t
- Especially though not only: online banking
- Some suggest never getting to bank site by clicking link in email.
Both banks I have some electronic dealings with regularly send me emails with a link I might want to click.

Worst: from Everbank for a survey about their customer service: Link’s text is: Please take our short online survey today; URL is http://www.surveymk.com/s.aspx?sm=8JmLvUhJxuXsj4Gi2wpL8w_3d_3d&c=19697%7CBANKING%5CCReinesc
Passwords: Quis costodiet?

- Confidentiality of password database: Sure don’t want it easily read!
- Don’t even want to facilitate brute force attacks against other computer stored value that is function of the password
- Should generate a random nonce ("salt") and store a hash of password with the nonce.
What you have

- Keys
- Cards/Chips
 - Time-generated number
 - Dumb cards: Returning same thing every time
 - Smarter Cards: Challenge and Response
- Computer itself
What you have attacks

- Stealing or finding
- Copying
- "Side channel":
 - Measure power consumption of smart card (it takes more power to read bit=1 than bit=0 of secret key because ultimately something electronics)
 - Or timing, radiation, etc.
Biometrics

- Most expensive to maintain
- Inherently imperfect even with perfect users
- Main types:
 - Fingerpring/palm scan (but gelatin molds)
 - Hand geometry
 - Retina/iris scan (very high accuracy)
Biometric techniques (cont)

- Voice print
 - can be distorted by colds, defeated by recordings
- Keyboard dynamics
 - Can record and playback
Social engineering

- A whole universe of clever attacks
CAPTCHA’s

- Authenticating merely one’s non-botness.
Coda: Kerberos

- Computer network authentication protocol, developed at MIT, today distributed as free software by MIT
 - Named for monstrous 3-headed dog guarding Hades
 - Classified as a monition by US and therefore illegal to export until crypto policy change around 2000 in light of *Bernstein v. U.S.*
 - Used in Windows 2000 onward; Mac OS X
Kerberos Protocol

- Based on Needham-Schroeder Protocol we’ll examine later (but bugfree)
- Trusted 3rd party, **Key Distribution Center (KDC)**, has 2 logically separate entities:
 - **Authentication Server (AS)**, to which users log on
 - **Ticket Granting Server (TGS)** gives tickets allowing access to resources (e.g., files)
Protocol itself (idea)

1. Alice logs onto AS using password, and gets session key/ticket K_{AS} to talk with TGS

2. To get service B, Alice contacts TGS, using K_{AS} to prove she’s Alice.

3. If Alice is entitled to B, TGS sends Alice key with time stamp and lifetime Alice uses to authenticate with resource B.
Kerberos Weaknesses

- Requires clock synchronization; complex deliberate attack could even attack the clocks
- Single point of failure: When the Kerberos server is down, nobody can log in.