On the Optimality of Colour-and-Forward Relaying for a Class of Zero-error Primitive Relay Channels

Yanying Chen, Natasha Devroye
University of Illinois at Chicago, Chicago IL 60607, USA
Email: ychen90, devroye @ uic.edu

Abstract—Recently a new “Colour-and-Forward” relaying strategy was proposed for the zero-error primitive relay channel, a relay channel in which the relay to destination link is out of band and of fixed, error-free capacity. This “Colour-and-Forward” scheme forwards the colour (from a minimum colouring) of the node corresponding to its received signal. This coding is of a carefully designed graph based on the joint distribution of the relay and destination outputs given the transmit signal. This scheme was used to provide a non-trivial upper bound on the minimum required conferencing link capacity to allow the overall network to achieve the single-input multi-output (SIMO) upper bound. In this paper, we strengthen the result and show that this upper bound is tight if one wants to achieve the SIMO bound in the overall network for any fixed number of channel uses.

I. INTRODUCTION

As shown in Figure 1, a primitive relay channel (PRC) $((X, p(y, y_R | x), Y \times Y_R, r))$ consists of a source terminal S that wants to communicate a message W to a destination terminal D aided by a relay terminal R. The broadcasting links $(X, p(y, y_R | x), Y \times Y_R)$ from the source to the relay and destination terminals are orthogonal to the error-free conferencing link with maximum rate r bits / channel use from the relay to the destination terminal. This channel model is motivated when a relay terminal cannot simultaneously transmit and receive signals or when the relay has an out-of-band link to the destination.

![Fig. 1. A primitive relay channel $((X, p(y, y_R | x), Y \times Y_R, r))$.](image)

The question we are interested in is how to operate the relay terminal to achieve the maximal possible network message rate while using the least number of bits on the conferencing link. It has been shown in [1] that relaying strategies like “decode-and-forward”, “compress-and-forward” and “hash-and-forward” are all sub-optimal in general. The core function of the relay is to help the destination in disambiguating the channel inputs, i.e. to provide “what the destination needs”. The relay need not decipher the channel inputs (messages) nor transmit what the destination can infer about the channel inputs from its own received signals.

What the relay should forward depends on both the broadcasting links and the allowable conference rate r. When r is infinite or large enough, the relay can simply forward everything it has observed to the destination terminal. Thus, the primitive relay channel effectively turns into a point-to-point channel $(X, p(y, y_R | x), Y \times Y_R)$, whose capacity is known. The natural question to ask is how large the conferencing link capacity r should be to ensure that the PRC network can achieve the capacity of the point-to-point channel $(X, p(y, y_R | x), Y \times Y_R)$. We denote this capacity as the single-input multi-output (SIMO) upper bound for the given PRC channel. When conference rate r is big enough such that the SIMO upper bound can be achieved, we say that an “effectively full cooperation” between the relay and destination terminals can be established.

![Fig. 2. Toy Problem: $p(y, y_R | x) = p(y | x)p(y_R | x)$. A solid link indicates the probability value $p(* | x)$ is positive, where * indicates y or y_R.](image)

Take for example a PRC with $p(y, y_R | x) = p(y | x)p(y_R | x)$ as in Figure 2. The destination, upon receiving Y can tell whether $\{1, 2\}$ or $\{3, 4\}$ were sent, but not which message within those sets. The relay can “provide the destination what it needs” by forwarding A or B, i.e. whether the X was even or odd. This amounts to considerable savings for the conferencing link capacity with respect to sending Y_R directly, and allows the destination to fully resolve which X was sent as long as the conferencing link capacity is at least 1 bit.

The Colour-and-Forward scheme first introduced in [2]

The work of the authors was partially funded by NSF under awards 1216825 and 1053933. The contents are solely the responsibility of the author and do not necessarily reflect the official views of the NSF.
generalizes this example. Here, we will show that it yields
the smallest conferencing link rate (for any fixed number of
channel uses) that will render the channel effectively fully co-
operative, achieving the SIMO bound. It may be checked that
this simple channel does not fall into a class of PRCs for which
capacity is known, i.e. it is not a degraded, semideterministic,
orthogonal-component, or semideterministic PRC.

The threshold for the conferencing link capacity highly
depends on the relationship between Y and Y_R, or the structure
of the conditional joint distribution $p(y,y_R|x)$. The small-
error 1 version of this question was first proposed in [1]
and remains open. The zero-error version was studied in [2],
which explicitly explored the channel structure using graph
theoretic notations and proposed a novel relaying algorithm
which depended highly on the structure of $p(y,y_R|x)$ termed
“Colour-and-Forward”. This scheme thus provided an upper
bound on the minimum conferencing link capacity which
would render the channel effectively fully cooperative.

Contribution. In this paper, we strengthen our prior work
and show that the Colour-and-Forward relaying algorithm yields the
smallest conferencing link capacity required to achieve the
SIMO upper bound for any given n, i.e. that the upper bound in [2] is tight. This is significant given that relay
channel capacity results are rare. The main result is presented
in Section IV in Theorem 2. One of the key steps in the
converse is the observation and utilization of the zero-error
data-processing inequality in Lemma 3. We further discuss connections between the Colour-and-Forward graph and the
Witsenhausen graph and state a conjecture about optimality
as $n \to \infty$.

II. ZERO-ERROR COMMUNICATION OVER A PRIMITIVE
RELAY CHANNEL

Note that the Colour-and-Forward relaying algorithm [2]
was developed in the context of communication over a PRC
without error. Zero-error communication naturally leads to a
problem formulation in terms of graphs. We begin this sec-
tion with some useful graph-theoretic concepts and notation.
Next, a preliminary introduction on zero-error point-to-point
communication is provided, before the problem of zero-error
communication over a PRC is formally defined. Throughout
the paper we will use subscripts z to emphasize this zero-
error context. We use upper and lower cases to differentiate
the overall network message rate R_z and the conference rate
r_z. All logarithms are base 2.

A. Graph theoretic notation

A graph $G(V,E)$ consists of a set V of vertices or nodes
together with a set E of edges, which are 2-element subsets
of V. Two nodes connected by an edge are called adjacent.
We will usually drop the V,E indices in (V,E).

An independent set of a graph G is a set of vertices, no
two of which are adjacent. Let independence number $\alpha(G)$ be
the maximum cardinality of all independent sets. A maximum
independent set is an independent set that has $\alpha(G)$ vertices.
Note that one graph can have multiple maximum independent
sets. A colouring of graph G is any function c over the vertex
set such that c^{-1} induces a partition of the vertex set into
independent sets of G. The chromatic number $\chi(G)$ of the
graph G is the least number of colours in any colouring. A
minimum colouring of graph G uses $\chi(G)$ colours.

The strong product $G \square H$ of two graphs G and H is defined
as the graph with vertex set $V(G \square H) = V(G) \times V(H)$,
in which two distinct vertices (g,h) and (g',h') are adjacent iff
g is adjacent or equal to g' in G and h is adjacent or equal to h' in H. $G^{\square n}$ denotes the strong product of n copies of G.

A confusability graph $G_X|Y$ of X given Y, specified by conditional probability function $p(y|x)$ with support \mathcal{X} and
output \mathcal{Y}, is a graph whose vertex set is \mathcal{X} and an edge
is placed when two different nodes $x, x' \in \mathcal{X}$ may be
“confused”, that is, if $\exists y \in \mathcal{Y} : p(y|x) \cdot p(y|x') > 0$. For
a given conditional probability function $p(y|x)$, we denote
$S_X|Y(y) := \{x : p(y|x) > 0\}$ as the conditional support
of $Y = y$. Thus, the confusability graph $G_X|Y$ can be equiva-
ently constructed by fully connecting the nodes inside
each conditional support $S_X|Y(y)$, for all $y \in \mathcal{Y}$.

B. Zero-error preliminaries

The zero-error capacity of a point-to-point discrete memo-
ryless channel was initially studied by Shannon in [3] in 1956;
see [4], [5] for further zero-error capacity details.

Consider zero-error communication over a point-to-point
channel $(\mathcal{X}, p(y|x), \mathcal{Y})$. First, note that only whether $p(y|x)$
is zero or not matters for communication without error. Next,
consider first communicating over a single channel use: the
maximal number of channel inputs the destination can distin-
guish without error is $\alpha(G_X|Y)$, the maximum number of ver-
tices that are non-adjacent, or pairwise distinguishable. When
multiple channel uses are allowed, we know that $\alpha(G^{\square n}_X|Y)$
is the number of distinguishable channel inputs X^n, where
$G^{\square n}_X|Y$ is the strong product of n copies of graph $G_X|Y$. 2 The
zero-error capacity is then characterized as [4]

$$\lim_{n \to \infty} \frac{1}{n} \log \alpha(G^{\square n}_X|Y) = \lim_{n \to \infty} \frac{\log \sqrt{\alpha(G^{\square n}_X|Y)}}{n},$$

which may be upper and lower bounded as [3], [4]:

$$\log \alpha(G_X|Y) \leq \lim_{n \to \infty} \log \sqrt{\alpha(G^{\square n}_X|Y)} \leq \log |\mathcal{X}|$$

where $|\mathcal{X}|$ is the cardinality of the input alphabet, which is the
maximal number of possible inputs per channel use. Note
the limit exists by Lemma 1.

Lemma 1. Let $G_X|Y$ denote the confusability graph speci-
ified by $p(y|x)$. Then the sequence $\{\log \sqrt{\alpha(G^{\square n}_X|Y)}\}$ converges
to $\sup\{\log \sqrt{\alpha(G^{\square n}_X|Y)} : n = 1, 2, \ldots\}$. 3

1Communication allowing a vanishing probability of error is called small-
error or c-error communication, while communication without error is called
zero-error or 0-error communication.

2Note that the n-fold strong product graph $G^{\square n}_X|Y$ is equivalent to graph
$G_X^{\square n}|Y^n$, which is the confusability graph directly constructed from the
compound channel $(\mathcal{X}^n, p(y^n|x^n), \mathcal{Y}^n)$ with $p(y^n|x^n) = \prod_{i=1}^{n} p(y_i|x_i)$.
Proof. It can be checked that the sequence $\{\alpha(G_{X,Y}^n)\}_{n=1}^{\infty}$ is super-multiplicative, i.e. $\alpha(G_{X,Y}^{n_1+n_2}) \geq \alpha(G_{X,Y}^{n_1}) \cdot \alpha(G_{X,Y}^{n_2})$ for any indices n_1, n_2. Thus, the sequence $\{\log \alpha(G_{X,Y}^n)\}_{n=1}^{\infty}$ is super-additive and each item is non-negative. By Fekete’s Lemma, the limit $\lim_{n \to \infty} \log \sqrt[n]{\alpha(G_{X,Y}^n)}$ exists and is equal to $\sup \{ \log \sqrt[n]{\alpha(G_{X,Y}^n)}, n = 1, 2, \ldots \}$.

C. Zero-error communication over a primitive relay channel

As shown in Figure 3, an n-shot protocol (n, X, h, g) for zero-error communication over a PRC $((X, p(y, y_R|x), Y \times Y_R), r_z)$ with an encoder ϕ, a codebook X^n, a relaying function h and a decoding function g. The minimum conference rate r_z^* can be upper bounded by the maximum achievable rate of the virtual channel $(X, p(y, y_R|x), Y \times Y_R)$:

$$C_z^{(n)}(r_z) \leq C_z^{(n)}(\infty) = \log \sqrt[n]{\alpha(G_{X,Y}^n)}.$$

$C_z^{(n)}(r_z)$ and $C_z^{(n)}(\infty)$ denote the $(n$-shot $)$ zero-error PRC channel capacity with conference link of some finite (r_z) or infinite rates respectively, while the broadcasting links $(X, p(y, y_R|x), Y \times Y_R)$ remain the same.

Define $C_z(r_z) = \sup_n C_z^{(n)}(r_z)$. Thus, we have $C_z(r_z) \leq \sup_n C_z^{(n)}(\infty)$. By Lemma 1,

$$\sup_n C_z^{(n)}(\infty) = \lim_{n \to \infty} C_z^{(n)}(\infty) =: C_z(\infty).$$

Formally, the minimum conference rate r_z^* that can enable an effectively full cooperation between the relay and destination terminals can be defined as:

Definition 1 (The minimum conference rate r_z^*).

$$r_z^* := \inf\{r_z : C_z(r_z) = C_z(\infty)\}.$$ (1)

We approach finding r_z^* by exploring $r_z^{(n)}$, the minimum conference rate for some fixed number of channel uses:

$$r_z^{(n)} := \inf\{r_z : C_z^{(n)}(r_z) = C_z^{(n)}(\infty)\}. \quad (2)$$

We conclude the characterization of $r_z^{(n)}$ in Theorem 2 and discuss our Conjecture 4 on r_z^* at the end of Section IV.

B. Colour-and-Forward relaying algorithm

The Colour-and-Forward relaying algorithm is defined as a minimum coloring function on the Colour-and-Forward graph, as shown in Definition 3 and Definition 2, for any n channel uses. Note that the bold font is adopted to indicate a sequence of length n. When a conditional joint pmf $p(y, y_R|x)$ with support X and output $Y \times Y_R$ is restricted to input X, we denote its induced conditional pmf, support and output by $p_X(y, y_R|x), \mathcal{X}$ and $\mathcal{Y} | \mathcal{X} \times \mathcal{Y}_R | \mathcal{X}_R$ respectively.

Definition 2 (Colour-and-Forward graph $G_{\mathcal{X}}^n$). Given a conditional joint pmf $p(y, y_R|x)$ with support X^n and output $Y^n \times Y_R^n$, graph $G_{\mathcal{X}}^n$ is an undirected graph with vertex set \mathcal{Y}_R^n and an edge $y_{R1} \sim y_{R2}$ is imposed when for some y, $x_1 \neq x_2$, $\Pr(Y = y, Y_R = y_{R1}|X = x_1) \cdot \Pr(Y = y, Y_R = y_{R2}|X = x_2) > 0$.

Definition 3 (Colour-and-Forward relaying $W_{\mathcal{X}}^{(n)}$). Given a conditional joint pmf $p(y, y_R|x)$ with support X^n and output $Y^n \times Y_R^n$, we define the Colour-and-Forward relaying $W_{\mathcal{X}}^{(n)}$ as a function of \mathcal{X}_R by a minimum colouring χ with $\chi(G_{\chi}^n)$ colours on graph $G_{\mathcal{X}}^n$:

$$W_{\mathcal{X}}^{(n)} := \chi(\mathcal{Y}_R).$$

where G_{χ}^n is defined in Definition 2. An alternative construction is provided in [2]. (Note that c is not unique.)

III. MINIMUM CONFERENCE RATE r_z^* AND COLOUR-AND-FORWARD RELAYING ALGORITHM

In Definition 1, we formally present our problem: finding the minimum required conference rate r_z^* that can enable an effectively full cooperation between the relay and destination terminals. We then state the Colour-and-Forward relaying algorithm [2] in Definitions 2 and 3. In [2], it was further shown that the Colour-and-Forward relaying algorithm is information lossless (Theorem 2 of [2]) and gave a novel upper bound T^*_n on $r_z^{(n)}$ (defined below and in Theorem 2). In Section IV, we will strengthen this and show that this upper bound is tight.

A. The minimum conference rate r_z^*

Allowing the relay and destination terminals to fully cooperate, for any fixed number of channel uses n, the network
IV. COLOUR-AND-FORWARD IS OPTIMAL

We now state our main result: that the Colour-and-Forward scheme provides the most efficient compression of Y_R's, provided one wants to achieve effectively full cooperation between the relay and destination. Achievability was provided in [2] and is not repeated here for sake of space, the converse is the challenging and novel aspect.

Theorem 2. For any fixed n, $r_2^{(n)} = T_u^{(n)}$, where $r_2^{(n)}$ is specified in (2) and $T_u^{(n)}$ is defined as

$$T_u^{(n)} := \min_k \log \chi(G_R^{(n)} | K)$$

where $\chi(G_R^{(n)} | K)$ is the chromatic number of graph $G_R^{(n)} | K$, constructed via the algorithm described in Definition 2 with restricted input / codebook K.

Remark: To give one a sense of the optimization involved, we provide an example for $n = 1$. We note that the minimization is over the different maximum independent sets of the graph $G_{X^n | Y^n, Y_R^n}$ and that different maximum independent sets may yield different conferencing link rates. To illustrate this, consider the PRC described by the joint distribution $p(y, y_R|x)$ provided in Table I. Its confusability graph, and compression graphs G_R constructed by the Colour-and-Forward algorithm (for inputs in X or some maximum independent subsets K_1 and K_2 of the confusability graph $G_X | Y_R$) when $n = 1$, are shown in Table II. We note that in order to have the smallest number of colours for the conferencing link we must use K_2 and not K_1.

To prove optimality of Colour-and-Forward relaying $W_R^*(n)$, we require the following zero-error data-processing inequality.

Lemma 3 (Data-Processing Inequality). Given a conditional pmf $p(y|x)$, let $Z = f(Y)$ be any deterministic mapping $f : Y \rightarrow Z$ and denote $p(z|x)$ the induced conditional pmf from $p(y|x)$. Then the confusability graph $G_X | Y$ specified by $p(y|x)$ has no more edges than the confusability graph $G_X | Z$ specified by $p(z|x)$; i.e., $E(G_X | Z) \subseteq E(G_X | Z)$.

Recall that the zero-error capacity of a point-to-point channel $(X, p(y|x), Y)$ is fully characterized by the confusability graph $G_X | Y$ and is directly related to the independence number of its n-fold strong product. The more densely a graph is connected, the smaller its independence number becomes. Lemma 3 states that the processed observation Z cannot remove any edges from the original confusability graph $G_X | Y$ and could potentially add edges, indicating a potential loss of information about the underlying variable X. Lemma 3 and its validity follows directly from the definition of confusability graph and the nature of zero-error communication.

Now we present the proof of Theorem 2.

Proof of Theorem 2. Achievability follows from our prior work in [2] and is based on showing that when $T_u^{(n)}$ different colours or $W_R^*(n)$ can be successfully transmitted to the destination terminal, the destination terminal, together with its own observations Y^n, can infer as much information about X^n as if Y_R^n was known. That is, $G_X | Y^n, W_R^*(n) = G_X | Y^n, Y_R^n$, which implies $C_R^*(n) = C_R(n)$ is achieved.

To establish Theorem 2, it suffices to prove $r_2^{(n)} \geq T_u^{(n)}$. Let (n, X, h, g) denote any n-shot protocol that can achieve the SIMO upper-bound message rate $C_R^*(n)$ without error, say $R_{2}^{(n)} = \frac{1}{n} \log \|X^n\| = \log \sqrt{\alpha(G_{X^n | Y^n, Y_R^n})}$. We will show that $\|W_R^n\| \geq \|W_R^{*(n)}\| = n^{2}T_u^{(n)}$ must hold for any such relaying function $h : Y^n_R \rightarrow W_R$ (for any n).

Because rate $\frac{1}{n} \log \|X^n\|$ can be achieved by the given n-shot protocol (n, X, h, g), we know that the induced subgraph $G_X | Y^n, W_R(A)$ must be edge-free. Recall that W_R is a deterministic function of Y_R^n, so (Y^n, W_R) is a deterministic function of (Y^n, Y_R^n). According to the data-processing inequality in Lemma 3, we have $E(G_X | Y^n, Y_R(W_R(A))) \subseteq E(G_X | Y^n, W_R(A)) = \emptyset$. Thus, we know that two induced subgraphs $G_X | Y^n, Y_R^n(A)$ and $G_X | Y^n, W_R(A)$ must both be free of edges. Consider any triple $(X = x^n, Y = y^n, W_R = w_R) \in X \times Y^n | A \times W_R$, we have

$$\Pr[Y = y^n, W_R = w_R | X = x^n] = \sum_{y_R^n : h(y_R^n) = w_R} \Pr[Y = y^n, Y_R = y_R^n | X = x^n]$$

4Graph $G(A)$ is the induced subgraph of graph G, with vertex set $A \subseteq V(G)$ and edge set $(A \times A) \cap E(G)$.

<table>
<thead>
<tr>
<th>Confusability graph</th>
<th>Compression graph</th>
<th>Colored compression graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \bullet 1 \bullet 5$</td>
<td>$2 \bullet 1 \bullet 5$</td>
<td>$2 \bullet 1 \bullet 5$</td>
</tr>
<tr>
<td>$3 \bullet 4$</td>
<td>$3 \bullet 4$</td>
<td>$3 \bullet 4$</td>
</tr>
<tr>
<td>$X = [1 : 5]$</td>
<td>Compression graph $G_R</td>
<td>x$</td>
</tr>
<tr>
<td>$2 \bullet 1 \bullet 5$</td>
<td>$2 \bullet 1 \bullet 5$</td>
<td>$2 \bullet 1 \bullet 5$</td>
</tr>
<tr>
<td>$3 \bullet 4$</td>
<td>$3 \bullet 4$</td>
<td>$3 \bullet 4$</td>
</tr>
<tr>
<td>$K_1 = [1 : 3 : 5]$</td>
<td>Compression graph $G_R</td>
<td>K_1$</td>
</tr>
<tr>
<td>$2 \bullet 1 \bullet 5$</td>
<td>$2 \bullet 1 \bullet 5$</td>
<td>$2 \bullet 1 \bullet 5$</td>
</tr>
<tr>
<td>$3 \bullet 4$</td>
<td>$3 \bullet 4$</td>
<td>$3 \bullet 4$</td>
</tr>
<tr>
<td>$K_2 = [2 : 3 : 5]$</td>
<td>Compression graph $G_R</td>
<td>K_2$</td>
</tr>
</tbody>
</table>

Table II

An example to show the impact of the choice of independent sets in Theorem 2. The conditional joint pmf $p(y, y_R|x)$ in discussion is shown in Table I.
Thus,
\[S_{X^n|Y^n,w_R}(y^n,w_R) = \{ x^n \in X^n : \sum_{y_R^n: h(y_R^n) = w_R} \Pr(Y = y^n, Y_R = y_R^n|X = x^n) > 0 \} \]
\[= \sum_{y_R^n: h(y_R^n) = w_R} \left\{ x^n \in X^n : \Pr(Y = y^n, Y_R = y_R^n|X = x^n) > 0 \right\} \]
\[= \bigcup_{y_R^n: h(y_R^n) = w_R} S_{X^n|Y^n,w_R}(y^n,w_R) \]

(3)

\[S_{X^n|Y^n,w_R}(y^n,w_R) \] has zero or one element because graph \(G_{X^n|Y^n,w_R}(X) \) has no edges. Similarly, since graph \(G_{X^n|Y^n,w_R}(X) \) is edge-free, \(S_{X^n|Y^n,w_R}(y^n,w_R) \) shall also at most have one element. So in equation (3), the sets to be unioned can have 0 or 1 element and all non-empty sets shall be the same, i.e., containing one same element. This means that for any fixed \(y^n = y^n \), any two different \(y^n \)'s such that \(S_{X^n|Y^n,w_R}(y^n,w_R) \) and \(S_{X^n|Y^n,w_R}(y^n,w_R) \) (which are both either an empty set or a single-element set) have different elements, say \(x^n_1 \) and \(x^n_2 \), are prohibited to be mapped into the same color \(w_R \). That is, requiring two \(y^n \)'s to be differentiated (via the relaying function \(h \)) if for some \(y^n, x^n_1 \neq x^n_2 \), \(\Pr(Y = y^n, Y_R = y_R^n|X = x^n_1) \cdot \Pr(Y = y^n, Y_R = y_R^n|X = x^n_2) > 0 \), is necessary. Equivalently, all edges in the compression graph \(G_{X^n|Y^n,w_R}(n) \) constructed in the Colour-and-Forward algorithm are necessary; any other valid relay mapping \(W_R = h(Y_R^n) \) would result in equally or more strict edge constraints than Color-and-Forward or graph \(G_{X^n|Y^n,w_R}(n) \). Note that as more edges are added to a graph, its chromatic number cannot decrease. Therefore, for any valid relay mapping \(W_R \), we have \(\|W_R\| \geq \|W_{R_1}(n)\| \), implying \(r^n_s \geq T_{u_1}(n) \).

Connection with other problems. When \(Y_R = X \) with probability 1, we know that graph \(G_{X^n|Y^n}(X) \) is edge-free. In this case, with a large enough confidence rate, we can achieve overall network message rate \(\log \|X\| \). This also implies that the channel input codebook has to be the full channel input alphabet \(X \), say \(\mathcal{X} = \mathcal{K} = \mathcal{X} \). In this specific case, finding \(r^n_s \) may be mapped to the source coding problem with receiver side information, which was solved by Witsenhausen [6] and in this case, coincides with the result presented here.

We note that in general, finding the minimum confidence rate \(r^n_s \) is different from Witsenhausen’s source coding problem with receiver side information. This is because: 1) not all PRCs have \(Y_R = X \); 2) when the SIMO bound is not the absolute maximum \(\log \|X\| \), only some subset of the channel input alphabet can be transmitted and there may be more than one choice of channel input codebook, as seen in the example in Tables I and II; and 3) in general, \(G_{X^n|Y^n}(n) \) is not a \(n \)-fold strong product of graph \(G_{X^n|Y^n}(1) \), i.e. \(G_{X^n|Y^n}(n) \neq G_{X^n|Y^n}(1) \otimes G_{X^n|Y^n}(1) \), and cannot be constructed via any standard graph product operations surveyed in [7].

The Colour-and-Forward compression graphs \(G_{X^n|Y^n}(n) \)'s behavior and chromatic numbers as a function of \(n \) is not obvious, and is the subject of ongoing work. Understanding this behavior will allow us to go beyond the restriction to \(n \) channel uses in Theorem 2 and characterize \(r^n_s \). As such, we conservatively propose the following conjecture.

Conjecture 4. \(r^n_s = \lim_{n \to \infty} T_u(n) \), where \(r^n_s \) is specified in (1) and \(T_u(n) \) is defined as in Theorem 2.

V. CONCLUSION

We have demonstrated that the recently introduced Color-and-Forward algorithm for the zero-error primitive relay channel, is able to optimally – for any fixed number of channel uses, requiring the smallest conferencing link capacity – compress the relay signal if one desires to achieve the SIMO upper bound. The central contribution was the demonstration of the converse. Connections with other problems such as coding for computing [8], understanding the behavior of the compression graph \(G_{X^n|Y^n}(n) \), and extensions of the zero-error Color-and-Forward scheme to the error-setting are the subject of current work.

REFERENCES

