On-Chip Voltage Regulation for Power Management in System-on-Chip

BY

JULIANA GJANCI
B.S. University of Illinois at Chicago, 2006

THESIS

Submitted as partial fulfillment of the requirements
For the degree of Master of Science in Electrical and Computer Engineering
In the Graduate College of the
University of Illinois at Chicago, 2008

Chicago, Illinois
ABSTRACT

On-Chip Voltage Regulation for Power Management in System-On-Chip

JULIANA GJANCI

The scaling of minimum feature sizes down to nanometer range and the spiraling frequencies in GHz scale has lead to system-on-a-chip (SOC) implementation for many emerging applications. To utilize the unprecedented computing power of over billion transistors on each SOC die many integrated circuit (IC) implementations have been adopting multi-core strategies instead of single-core implementation. It is predicted that a network-on-chip (NOC) communication fabric will be used in such multi-core SOCs. In the coming decades, market competition among different design paradigms and implementation strategies will resolve itself as their technical and economical costs and benefits are being widely investigated and documented. However, ITRS and all the recent studies and roadmaps have indicated that in all future micro- and nano-electronic circuits and systems power distribution, reliability and management issues are expected to become the most serious bottlenecks. The frequency increase as well as convergence towards mixed-signal systems has aggravated the difficulties of supplying clean power to integrated circuits. Power consumption has a critical impact on IC performance, and therefore, its management is important. Ineffective power management causes lower chip performance, increases area and makes the design nonfunctional. Therefore, more than ever, power integrity is vital in the successful design of today’s electronic systems.
With the growing power management concern in high performance microprocessor designs the requirement for efficient voltage regulation has become a very critical design challenge. The objectives of this thesis are to investigate the scopes and techniques for on-chip voltage regulation in SOC design, and to synthesize a methodology for on-chip voltage regulator module (VRM) implementation. The approach is primarily based on existing voltage regulator topologies that are used for off-chip voltage regulation. Here on-chip implementation and performance of these voltage regulators will be investigated. In order to accomplish these goals, the following specific tasks have been attempted in this research initiative:

- Perform in-depth analysis of all the available regulator topologies that have been used for off-chip voltage regulation at the printed circuit board (PCB) level.
- Investigate the best topology suitable for on-chip implementation.
- Synthesize an on-chip design strategy that provides better regulator efficiency and power management, and minimizes design complexity and cost.
- Investigate the performance implications of placing the regulators on chip.

Aggressive power management is necessary since more devices are packed on a single processor chip operating at high frequencies. Analysis indicates that a DC/DC step-down voltage regulator module (VRM) is needed to deliver power from the source to the load, to provide constant voltage to the load, control power fluctuations, and prevent damages to loads connected to the supply. Traditionally voltage regulators are off-chip devices due to the large inductive and capacitive filter elements that they employ. They operate at low switching frequencies, typically lower than 5MHz, and as a result they fail to perform fast voltage transitions. Furthermore, on-chip implementation of such regulators employing large inductive
and capacitive elements is not practical due to their complexity and high cost. This is especially a bottleneck when multiple on-chip power domains are needed.

The methodology proposed in this thesis includes a two-stage converter with the first stage consisting of a switching voltage regulator located off-chip and the second stage consisting of a tree linear regulator topology located on-chip. This approach proves to be efficient, simple, and less costly compared to other options that offer total on-chip integration of switching regulators. The proposed approach combines the advantages of both voltage regulator topologies - switching and linear, and results in one hybrid design that is suitable for multi-core SOC implementations.
ACKNOWLEDGMENTS

First, I would like to thank God for all that He has endowed upon me and all the opportunities that He has presented to me in life. I would like to thank my parents for their encouragement and support and for creating the opportunity for me to study in the United States. None of my success would have been possible without them.

I would like to express my gratitude and deepest appreciation to my advisor, Dr. Masud H. Chowdhury, for his advice, help, support, motivating suggestions and encouragement during my research. His endless energy and enthusiasm in research has motivated all of his students, including me. I wish him all the best. It was an honor to have Dr. Ashfaq Khokhar and Dr. Kaijie Wu in my thesis committee. I am grateful for their comments and objective directions to complete the Masters Thesis work.

Last but not least, I would like to extend my gratitude to all of the people who have helped and inspired me during my research, my friends and colleagues especially Nima Jahedi, who volunteered their time and effort to help me.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Brief Overview of Microprocessor Evolution .. 13
1.2 Microprocessor Power Delivery and Load Characteristics 15
1.3 The Role and Operation of a Voltage Regulator .. 18
1.4 Off-Chip VR Alternatives ... 20
1.5 Why On-Chip VR

1.5.1 Limitations of Off-Chip Voltage Regulator ... 23
1.5.2 Limitations of Off-Chip Voltage Regulator ... 25
1.6 Thesis Outline ... 26

2 VOLTAGE REGULATOR TOPOLOGIES

2.1 Complete Survey of all On-Chip VRM Topologies ... 28
2.1.1 Linear Regulators ... 28
2.1.2 Switching Regulators ... 30
2.2 Other On-Chip-Friendly VR Topologies ... 31
2.2.1 Switched Capacitor Circuits (Charge Pumps) ... 31
2.2.2 MEMS Approach (DC/DC Converters with MEMS Inductors) 32
2.2.3 Inductor Multiplier Technique ... 32
2.3 Relative Merits/Demerits of Each Option ... 33
2.4 On-Chip VRM Issues ... 34

3 ON-CHIP VRM FOR SINGLE AND DUAL CORE SYSTEMS

3.1 Single-Core Voltage Regulation .. 37
3.2 Buck-Type Switching Regulator for On-Chip Implementation 38
3.3 Implementation Challenges .. 41
3.4 Hot Swap Controller Solution ... 43

4 TWO-STAGE APPROACH FOR VOLTAGE REGULATOR IMPLEMENTATION IN SOC

4.1 Hybrid Two-Stage Regulator .. 49
4.2 Stage 1: Switching Regulator .. 51
4.2.1 Pulse Width Modulation (PWM) .. 55
4.2.2 Switching Regulator Efficiency ... 55
4.3 Stage-2: Low Dropout Linear Regulator (LDO) ... 57
4.3.1 Pass Element ... 58
4.3.2 Error Amplifier ... 61
4.3.3 Power Supply Ripple Rejection ... 62
4.3.4 Efficiency of Low Dropout Linear Regulator .. 63
4.4 Simulation Results and Analysis ... 64

5 FUTURE WORK ... 74
5.1 Power Management and Thermal Stability in Multi-Core Chips 74
5.2 Efficient Power Gating Techniques for Multi-Core Design 76

6 CONCLUSION .. 81

REFERENCES ... 83
LIST OF TABLES

Table 1. Switching Regulator Circuit Parameters..54
Table 2. LDO regulator efficiency..64
Table 3. LDO regulator efficiency, parallel design ..73
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1. Exponential increase of transistors per die</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1-2. Current and voltage roadmap for present and future microprocessors</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1-3. Voltage regulator providing power to the microprocessor</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1-4. Voltage regulator (VR-down) on motherboard</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1-5. Voltage regulator module, VRM</td>
<td>17</td>
</tr>
<tr>
<td>Figure 1-6. Voltage regulator operation</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1-7. Laptop power supply</td>
<td>21</td>
</tr>
<tr>
<td>Figure 1-8. Circuit of a conventional buck converter</td>
<td>22</td>
</tr>
<tr>
<td>Figure 1-9. Circuit of a synchronous buck converter</td>
<td>22</td>
</tr>
<tr>
<td>Figure 1-10. Circuit of a multi-phase buck converter</td>
<td>23</td>
</tr>
<tr>
<td>Figure 1-11. Off-chip voltage regulator module</td>
<td>24</td>
</tr>
<tr>
<td>Figure 1-12. On-chip voltage regulator module</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2-1. Power distribution noise in a system on a chip</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2-2. Linear regulator</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2-3. Switching regulator</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2-4. Switched capacitor regulator</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2-5. Switching regulator employing inductor multiplier</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3-1. Intel dual core processor, from Intel website</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3-2. Switching Regulator with hysteresis control</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3-3. Inductor Current in Switching Converter</td>
<td>40</td>
</tr>
</tbody>
</table>
Figure 4-22. Switching-LDO tree design waveforms

Figure 4-23. Switching-LDO tree design quiescent waveforms

Figure 4-24. Switching-LDO tree design load transient waveform

Figure 4-25. Switching-LDO tree design

Figure 4-26. Switching-LDO parallel design waveforms

Figure 5-1. Multi-core/multi-block Dynamic Power Management System

Figure 5-2. The Proposed Power Gating Scheme

Figure 5-3. Switching regulator operating with transconductance gyrator
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>BJT</td>
<td>Bipolar Junction Transistor</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide-Semiconductor</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic Random Access Memory</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Technology Roadmap Semiconductor</td>
</tr>
<tr>
<td>LDO</td>
<td>Low Dropout</td>
</tr>
<tr>
<td>LR</td>
<td>Linear Regulator</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro-Electro-Mechanical Systems</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal-Oxide-Semiconductor-Field-Effect-Transistor</td>
</tr>
<tr>
<td>NMOS</td>
<td>N-channel Metal-Oxide-Semiconductor</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PDN</td>
<td>Power Delivery Network</td>
</tr>
<tr>
<td>PMOS</td>
<td>P-channel Metal-Oxide-Semiconductor</td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>R<sub>DS</sub></td>
<td>Drain-to-Source Resistance</td>
</tr>
<tr>
<td>SOC</td>
<td>System-on-Chip</td>
</tr>
<tr>
<td>UIC</td>
<td>University of Illinois at Chicago</td>
</tr>
<tr>
<td>VR</td>
<td>Voltage Regulator</td>
</tr>
<tr>
<td>VRM</td>
<td>Voltage Regulator Module</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Brief Overview of Microprocessor Evolution

Since the birth of the microprocessor the industry has continued to innovate and improve performance. Upgrading microprocessor performance requires packing more transistors on a chip, which necessitates a very sophisticated process technology. As Intel co-founder Gordon E. Moore predicted, transistor density on an integrated circuit has doubled almost every two years in the past decade, which means that semiconductor technology has also doubled its effectiveness, as shown in Figure 1-1.

![Moore's Law](Image)

Figure 1-1. Exponential increase of transistors per die

(Intel Material Technology Operation 2004, by Ed Stanford, Intel)
The microprocessor frequency of operation has also increased dramatically along with the increase of device density. Load transition speeds have also increased as a result of high frequencies. Billions of transistors operating in GHz scale frequencies result in tremendous amount of power dissipation leading to very high overall and extremely high-localized spatial thermal stress. As a consequence, there is an immediate need for techniques to manage power and performance especially in systems that run multiple applications such as multi-core systems. With the recent trend towards system-on-a-chip and multi-core systems, power management techniques that were designed for single-core microprocessors must be improved and applied at the chip-level to exploit the larger design space.

![Figure 1-2. Current and voltage roadmap for present and future microprocessors](Intel Material Technology Operation 2004, by Ed Stanford, Intel, [38])
1.2 Microprocessor Power Delivery and Load Characteristics

As users demand each generation of devices to handle more complex tasks, higher levels of computation and performance are required [1]. Technology scaling has continuously driven towards higher levels of integration, higher frequencies, higher currents, and lower operating voltages, as shown in Figure 1-2. Current demands have increased with the number of transistors, and in order to keep the power consumption low, the supply voltage has decreased. System architecture is also changing with rapidly scaled technology [21] and power/performance tradeoffs will be made visible to chip architects [28]. For technologies down to 90 nm it has been possible to continue increasing performance while reducing power for the same functionality from one processor generation to the next. However, for 65 nm and below, the effect of increased interconnection length and resistance, coupled with a relatively flatter operating voltage, has caused a significant dynamic and static power increase in complex chips [13].

Due to these factors (low voltage, high current, and fast load transition speeds) delivering high-quality power to modern processors has become a challenging task. Few years ago CMOS processors used to operate with frequencies above 300MHz with 2.5-3.3V output range but future processors will be designed at 1.1V-1.8V range in order to improve their speed and power performance [23]. As a result they will introduce dynamic loads with high current slew rates during transients, and therefore, it is no longer practical to provide power to these processors directly from the supply.

A special power supply device, the voltage regulator, with high efficiency and fast transient response is needed to deliver the required high current and well-regulated voltage in very fast transient response conditions. Voltage regulators that are integrated on the same chip as the core provide the benefit of per-core voltage control and fast-voltage switching [2]. Since the
processor’s operating voltage is much lower than the supply voltage, a step-down voltage regulator module (VRM) is needed. Figure 1-3 shows the conceptual power delivery of a microprocessor, employing a DC/DC step-down voltage regulator module (VRM) that is needed to deliver power from the source to the load and to provide constant voltage. In addition, the voltage regulator controls power fluctuations, and prevents damages to loads connected to the supply.

![Figure 1-3. Voltage regulator providing power to the microprocessor](image)

There are two types of voltage regulators that are used to provide power to the processor, VR-down voltage regulators and VR-modules (VRM). The difference between the two is that VR-down is built onto the motherboard, as shown in Figure 1-4, while VRM is a module that can be plugged in on the motherboard, as shown in Figure 1-5.

![Figure 1-4. Voltage regulator (VR-down) on motherboard](image)
In both cases the voltage regulator is placed close to the microprocessor load in order to reduce the effect of parasitic inductive and capacitive elements on the transient response that lie between the regulator and the load. Most of today’s computer systems that employ only one processor use VR-down and when computer systems employ more than one processor, such as server systems, they use VRM, usually one VRM per processor.

Regardless of the types of voltage regulators, their functions and required characteristics remain the same. Voltage regulators must have fast transient response, which means they should be capable of responding quickly to changes in load current and have high efficiency and power density. Systems-on-chip and Networks-on-chip will be based on multi-core platforms in the future and their increase in performance, reliability, and lifespan [3] will place the need for efficient voltage regulators that provide a stable and well-regulated DC voltage starting from a power source [4]. However, the design of such regulators faces challenges since they have to efficiently feed a low-voltage load over a widely varying load-current range [5].
1.3 The Role and Operation of a Voltage Regulator

The role of the voltage regulator is to deliver power from the source, which is usually unregulated, to the load, which needs regulated voltage [36] with minimum loss and maintain constant voltage to the microprocessor during transient response. Changes in load current occur when the microprocessor switches between sleep mode and active mode, and vice versa. When load currents increase step up transients occur and when load currents decrease step down transients occur. Since there are a large number of transistors involved, the microprocessor performs fast transitions between different load levels, which need to be completed quickly due to high clock speeds. These performance constraints along with power density and efficiency concern voltage regulator design.

In recent years, low voltage-power converters are achieving remarkable attention because the most effective way to reduce the power of active circuits is by operating at a lower power supply voltage ([39], [49]). High-efficiency converters are necessary for smooth power delivery and handling of load variation. There would be large power dissipation, which would result in heat, and therefore, large and expensive cooling systems would be needed. The efficiency of a converter having output power, P_{OUT} and input power, P_{IN} is:

\[
\eta = \frac{P_{\text{OUT}}}{P_{\text{IN}}} \quad (1-1)
\]

Whereas power loss is given by:

\[
P_{\text{LOSS}} = P_{\text{OUT}} \left(\frac{1}{\eta} - 1\right) = P_{\text{IN}} - P_{\text{OUT}} \quad (1-2)
\]
This power loss is converted into heat, which must be removed from the converter. This leads to a large and expensive cooling system, it causes the electronic elements within the converter to operate at high temperature, and it reduces the system reliability. Certainly, at high output powers, it may be impossible to sufficiently cool the converter elements using current technology.

Efficiency is a good measure of the quality of a given converter technology. When very little power is lost, the converter elements can be packaged with high density, leading to a converter of small size and weight, and of low temperature rise. The question is how can we build a converter circuit that changes the voltage, yet dissipates negligible power? The available circuit elements that can be used to build such converter circuit are [51]:

- Resistive elements, capacitive elements, magnetic devices including inductors and transformers, semiconductor devices operated in the linear mode (for example, as class A or class B amplifiers)
- Semiconductor devices operated in the switched mode (such as in logic devices where transistors operate in either saturation or cutoff).

![Figure 1-6. Voltage regulator operation](image)
Figure 1-6 shows how the voltage regulator takes an unregulated voltage and through semiconductor switches and control circuitry provides a regulated output voltage that is suitable for load operation.

In conventional signal processing applications, where efficiency is not the primary concern, inductors are usually avoided wherever possible, because of their large size and the difficulty of incorporating them into integrated circuits. In contrast, capacitors and magnetic devices are important elements of switching converters, because ideally they do not consume power. It is the resistive element, as well as the linear-mode semiconductor device, that is avoided [2]. Switched-mode semiconductor devices are also employed. When a semiconductor device operates in the off state, its current is zero, and hence its power dissipation is zero. When the semiconductor device operates in the on (saturated) state, its voltage drop is small, and hence its power dissipation is also small. In either event, the power dissipated by the semiconductor device is low. So capacitive and inductive elements, as well as switched-mode semiconductor devices, are available for synthesis of high-efficiency converters.

1.4 Off-Chip VR Alternatives

There are various types of voltage regulators that can be used for off-chip implementation on the motherboard. The selection of the regulator topology depends upon system requirements for maximum load current, output voltage tolerance, quiescent current, type of input voltage source, and any special communication features such as an I2C interface. Figure 1-7 shows the power supply system of a laptop. As seen in this figure there is a variety of DC/DC voltage regulators that are needed to change the battery voltage into several voltages that are required by different loads.
In this scheme, the charger converts alternating current (AC) from the power line to direct current (DC) to charge the battery. The inverter produces high voltage and high frequency AC that is needed to drive lamps for backlighting. The boost converter is a step-up converter which increases battery voltage to the level required by the disk drive. Finally, the buck converter which is a step-down converter decreases battery voltage to produce low level DC voltage that is needed by the microprocessor. Here, the microprocessor requires aggressive power management to control various modes such as sleep mode and active mode in order to reduce power consumption and save battery life.

Despite the variety of voltage regulators that were mentioned for motherboard application, our main focus will be the buck converter since its design and implementation is crucial in delivering power to the microprocessor. A fundamental circuit for buck converter is shown in Figure 1-8 and a synchronous buck converter is shown in Figure 1-9.
Low-voltage power supplies require a synchronous buck converter as oppose to the conventional converter. Here, the diode is replaced by a MOSFET for better efficiency. The transistor channel conducts current in the reverse direction and blocks negative voltage while conducting positive current. The diode is the major source of loss and when it is replaced by MOSFET the conduction loss decreases since the transistor operates as a synchronous rectifier. Other losses include the series resistance of the battery, the on-resistance of the switching element, and the resistances in the conductors, connectors and wiring [42, 43]. Switching loss and inductance loss increase with frequency, which limits the operating range of the DC-DC converters to a few megahertz (1, [46]). Another buck converter topology that is typically used on the motherboard is the multi-phase buck, which consists of several phases in order to minimize the ripple of the output current caused by the circuit inductor.
Figure 1-10 shows a typical synchronous multi-phase buck converter that employs inductances with smaller values. Large inductors cause large current ripple at the output so the multi-phase buck converter allows the cancellation of the current ripples at the output node thus providing an output current with less ripple. Using smaller inductances also improves transient response and power density. Another potential benefit of this converter topology is the even distribution of thermal dissipation due to scattering of the branches. Therefore, this technique has become very popular in the power electronics industry. Drawback of this technique is that using smaller inductance reduces efficiency [44].

1.5 Why On-Chip VR

In the recent years, the industry has been giving emphasis on integrating the voltage regulators on the same chip as the load they feed. This will cause enormous benefits in multi-core voltage regulation since on-chip integration will result in a decrease in size of filter elements, which means higher operating frequencies, and thus will provide faster response to changes in load current. Furthermore, on-chip implementation has potential to provide multiple supply voltages in chip multiprocessor systems.
1.5.1 Limitations of Off-Chip Voltage Regulator

Voltage regulators deliver power from an energy source to multiple integrated circuits. They are typically off-chip devices due to the large power transistors and output filter components that are required. However, these off-chip regulators occupy a significant portion of the PCB area and make it costly. Furthermore, off-chip voltage regulators operate at low frequencies, which prevent them from adjusting to new voltages rapidly. Also, there are parasitic elements (inductance and capacitance) in the power delivery network, between the VRM and the load, which affect the voltage variation problem. Figure 1-11 shows a power delivery system where the regulator is placed off-chip and as a result it cannot respond quickly to changes in load current. Also, since the parasitic components reside between the load and the regulator, they will create resonance in the circuit.

![Figure 1-11. Off-chip voltage regulator module [1]](image)

In order to minimize this effect, voltage regulators can be placed close to the load. However, the drastic load current change (di/dt) problem in processors and mid-frequency package resonance issues cannot be eliminated. Decoupling capacitors can be added on the PCB to reduce this effect; but even this is not the optimal solution since placing many capacitors on the PCB occupies valuable area.
1.5.2 Limitations of Off-Chip Voltage Regulator

On-chip regulators provide faster voltage switching and improved power delivery. They remove impedance restrictions of the power delivery systems by reducing mid-frequency package resonance issues. Furthermore, an on-chip regulator operating at high switching frequencies avoids bulky filter components such as inductors and capacitors, allows filter capacitor to be integrated entirely on-chip, and enable fast voltage transients.

![Figure 1-12. On-chip voltage regulator module [1]](image)

With the growing push towards multi-core system-on-chip implementations, in recent years, there has been a surge of interest to build on-chip integrated switching voltage regulators [9, 10]. Tight integration between the VR and the microprocessor results in resonance elimination. These regulators, operating with high switching frequencies, can obviate large valued inductors and capacitors, allow the filter capacitor to be integrated entirely on-chip, place smaller inductors on the package, and enable fast voltage transitions at nanosecond timescales [2]. There is a direct tradeoff between the switching frequencies of the voltage regulator and their power conversion efficiency [2].
1.6 Thesis Outline

This dissertation consists of six chapters, which are organized as follows. Chapter 1 is the background review of multiprocessor evolution and existing voltage regulator topologies that are used both off-chip and on-chip. Motivation of this dissertation as well as various limitations and benefits of present on- and off-chip regulator topologies are also discussed. Chapter 2 offers a detailed discussion and survey of regulator topologies that have been used for on-chip implementation, as well as it discusses their benefits and drawbacks. Chapter 3 includes on-chip regulator options for integrating a hot swap controller on-chip along with a switching regulator to control and protect the core from seeing any droops in the circuit. Chapter 4 is the two-stage tree design technique that is proposed to deliver power to various function blocks in a system-on-Chip. Simulations and analysis are performed to show that this technique provides high efficiency and is suitable for system-on-chip implementation. Chapter 5 includes a proposal for system-on-chip and multi-core systems and why the proposed hybrid technique is effective in these environments, detailed discussion of our future work is also discussed. Finally Chapter 6 concludes the dissertation.
2 VOLTAGE REGULATOR TOPOLOGIES

Voltage regulation and power management of integrated circuits has turned into a very critical challenge for nano-scale IC designers. The proliferation of portable electronic devices has directed increasing demands for higher levels of integration in order to reduce board space requirements. The requirements for low cost, small size, and extended battery life in this market are changing the specifications of such highly integrated power functions. It is imperative that for multi-core implementation on-chip voltage regulator offers enormous benefits.

Figure 2-1. Power distribution noise in a system on a chip [5].

Absence of voltage regulators in highly integrated, high performance, and high frequency system designs can prove to be catastrophic. In fact, due to the drive towards total chip integration, which results in smaller and less expensive portable devices, requires that such supply circuits be included in every chip.
2.1 Complete Survey of all On-Chip VRM Topologies

Key to the design of power efficient ICs is performing high-efficiency DC/DC conversion. In general, DC/DC converters are placed off-chip, where one regulator resides between the source and each load and this is called star configuration [25]. This regulator delivers current with the appropriate voltage levels to different loads in the circuit. ITRS predicts an increase in the power consumption of microprocessors for future applications. The power delivery network (PDN) provides the power supply to the processors and when it is not designed properly it may be a major source of noise in the circuit, especially in high-speed electronic systems.

2.1.1 Linear Regulators

The linear regulator is the fundamental building block of almost every power supply used in electronics. It offers ease of on-chip implementation due to its small size, low cost, low noise, no complexity and fast response to load current transients. Furthermore, since the linear regulators are inexpensive and small in size they provide enormous benefits in systems requiring multiple voltage islands.

![Figure 2-2. Linear regulator](image)
Typical linear regulator is shown in Figure 2-2. The low noise characteristics and smaller size and complexity also makes them potential candidates in systems where the difference between the input and output voltages is small. This topology is especially preferred in low power applications due to their low quiescent currents.

Referring to Figure 2-2, the linear regulator operates using a MOSFET acting as a sense resistor in order to force a fixed voltage at the output. The role of the control circuit is to monitor the output voltage and adjust the current through the sense resistor so the output voltage is held at the desired value. The most efficient form of a linear regulator is the low dropout (LDO) linear regulator. The dropout voltage refers to the minimum voltage drop required across the regulator to maintain output voltage regulation. The lower the dropout voltage is, the higher its power efficiency is since there is maximum power delivered to the load, which is given by:

$$P = (V_{IN} - V_{dropout}) \times I_{load} \quad (1-3)$$

Power extracted from the input source is:

$$P = V_{IN} \times (I_{load} + I_{quiescent}) \quad (1-4)$$

$$P = (V_{OUT} - V_{IN}) \times I_{load} \quad (1-5)$$

$I_{quiescent}$ is the quiescent current in the internal LDO circuitry. To have a high efficiency LDO regulator the dropout voltage and the quiescent current must be minimized and also, the voltage
difference between input and output must be minimized since the internal power dissipation of LDO regulators, equation (1-5) accounts for the loss of power efficiency.

2.1.2 **Switching Regulators**

Switching regulators are generally mixed-mode circuits that feed back an analog error signal and digitally gate it to provide bursts of current at the output [29]. They provide good power conversion efficiency due to the presence of inductor, which is a low-loss energy transfer device. This regulator topology is less sensitive to the V_{OUT}/V_{IN} ratio and can regulate a wide range of output voltage levels with better efficiency. A typical switching regulator topology is shown in Figure 2-3.

![Figure 2-3. Switching regulator](image)

The switching regulator circuit requires a controller with an oscillator, pass elements, inductor, capacitor, and diodes [29]. The worst-case response time of a dc-dc converter depends on the oscillating frequency of the controller (20 – 200 kHz) and circuit delay and as a result, the response time is 6-8 µs, whereas linear regulator is faster and requires 1-2 µs [29]. The output voltage of a switching regulator is noisy due to the presence of the inductor, which causes large current ripple at the output. The high noise present is also a consequence of the rectified inductor
voltage behavior of the output of these converters. Also, the noise problem is aggravated by on/off sleep mode transitions.

2.2 Other On-Chip-Friendly VR Topologies

There are other topologies that may be used for on-chip implementation however their use is limited by system requirements and specifications.

2.2.1 Switched Capacitor Circuits (Charge Pumps)

This type of DC/DC converters consist of switches and energy transfer capacitors in the power stage as shown in Figure 2-4.

![Switched capacitor regulator](image)

Figure 2-4. Switched capacitor regulator [14]

The switches are turned on and off so that the converter cycles through a number of switched networks. This topology is easy to implement however, it has several drawbacks such as pulsating input current, weak regulation capability due to V_{OUT} dependence from V_{IN}, and the voltage conversion is predetermined by the circuit structure.
2.2.2 MEMS Approach (DC/DC Converters with MEMS Inductors)

MEMS technology provides the integration of passive elements on-chip. These types of DC/DC converters use micro-machined inductors. However, major drawback of this technique is process compatibility with fabrication processes. It is very difficult to interface these types of DC/DC converters on-chip with CMOS or BJT devices.

2.2.3 Inductor Multiplier Technique

Main idea is to use a small inductor and multiply its value as needed in various on-chip clusters.

![Switching regulator employing inductor multiplier](image)

Figure 2-5. Switching regulator employing inductor multiplier [14]

Figure 2-5 shows a buck converter employing the inductor multiplier technique [14]. Experimental results show that this technique provides low efficiency and high power dissipation, which does not make it a good candidate for on-chip implementation. [15] demonstrates an area-efficient linear regulator for multi-supply voltage microprocessors.
implemented in a 90 nm CMOS technology. This approach is good in terms of achieving high current efficiency of 94%, however, it only provides 74% power efficiency for a 1.2V input and 0.9V output. Efficiency in the case of linear regulators is sensitive to $V_{\text{OUT}}/V_{\text{IN}}$ ratio. [16] also provides an on-chip linear regulator topology that exhibits 96.5% current efficiency by employing a flexible control technique of output current (FCOC). However, despite the high current efficiency, power efficiency is relatively low for a 5V input and 3V output. It is about 60% due to the $V_{\text{OUT}}/V_{\text{IN}}$ dependency. An on-chip, two-stage approach consisting of a switched capacitor regulator for high-voltage conversion and a linear regulator for low voltage conversion was demonstrated in [50] however, this approach provides low efficiency.

2.3 Relative Merits/Demerits of Each Option

The integration of voltage regulators on the same chip that needs to be supplied poses new challenges on process technology. This means that these regulators need to be available in the same process technology as the application. It is very difficult to accomplish this task while maintaining high efficiency and system performance. Both preferred topologies, linear and switching, for on-chip implementation pose significant demerits in this concern.

Starting with the linear regulator, its dependency on the $V_{\text{OUT}}/V_{\text{IN}}$ ratio has negative impact on the efficiency. If the value of the output voltage, V_{OUT}, is close to the value of the input voltage, V_{IN}, such as $V_{\text{OUT}}/V_{\text{IN}} = 1.0\text{V}/1.1\text{V} = 90\%$ efficiency, we get good efficiency. However, if the output voltage is much lower than the input voltage, such as $V_{\text{OUT}}/V_{\text{IN}} = 5\text{V}/10\text{V} = 50\%$ efficiency, we get poor efficiency since we have to drop 5V across the regulator. If our output current would be say 10A then power dissipation would be $10\text{A}\times5\text{V} = 50\text{W}$ which cannot
be ignored when it comes to on-chip implementation. It requires heat sinks, which may increase area and cost.

Next in line, switching regulators, also exhibit serious concerns when it comes to on-chip implementation. Major drawback of this topology is the large size of the inductor and capacitor that occupy large printed circuit board (PCB) area. So, for off-chip implementation these types of regulators are good in terms of providing high-conversion efficiency, but they occupy valuable PCB space. For on-chip implementation, the size of the inductor and capacitor is reduced since the regulator operates at high frequencies. However, this results in efficiency degradation since reducing the on-chip filter capacitor limits the total amount of instantaneous charge available to the load thus causing voltage fluctuations [27]. Another drawback of on-chip switching regulators is their lack of providing clean output voltage due to the presence of the inductor. Ripple voltage needs to be low in order not to effect the operation of the circuit the regulator is supplying to. The requirements for high efficiency and high accuracy make the size of the inductor prohibitively large for SOC solutions, where the inductor is embedded in the chip.

2.4 On-Chip VRM Issues

Before unveiling the next two chapters that discuss proposed approaches for microprocessor and system-on-a-chip power delivery and management by integrating the regulator on the same chip as the application, we should point out the requirements and issues that concern their on-chip implementation. On-chip implementation requirements are efficient, small, inexpensive, and simple regulator topologies that besides providing constant and well-regulated voltage should also be capable of allowing the creation of multiple voltage islands on-
chip. This is important given the technology trend towards system-on-chip and chip multiprocessors. Some of the challenges include:

- Efficiency degradation due to size reduction of filter components and high switching frequencies.
- Smaller capacitor provides less charge to the load, which becomes vulnerable to large di/dt events that cause voltage fluctuations.
- In order to reduce fluctuations, decoupling capacitors are used but with the overhead of increasing chip area.
- On-chip regulator uses the filter capacitor for both decoupling and filtering, which causes large voltage droops since large load current steps rapidly drain out the limited charge stored on the capacitor.
- Circuit droops are assisted by filter component size reduction.
- Inductance issues. A decrease in inductance size results not only in faster switching and higher inductor ripple current, but in a more noticeable parasitic inductance in the circuit as well.
- Inductor fabrication challenges.
3 ON-CHIP VRM FOR SINGLE AND DUAL CORE SYSTEMS

International Technology Roadmap for Semiconductors, ITRS, [11] as well as most other studies and roadmaps have specified that in all future micro- and nano-electronic circuits and systems power management and distribution will become the most serious design challenge. Power consumption has a critical impact on IC performance and therefore its management is important. Ineffective power management causes lower chip performance, increases area and makes the design nonfunctional.

On-chip voltage regulation offers enormous benefits for embedded and portable electronic systems, which are in high public demand. They provide fast voltage switching and improved power delivery. However, their design and implementation has become a critical design challenge in today’s computer microprocessor technology. This chapter gives detailed simulations and analysis on how to handle challenges coming from on-chip voltage regulator implementation on single and dual core systems.
3.1 Single-Core Voltage Regulation

Voltage regulators are found in nearly all computing systems and are essential for delivering power from an energy source to multiple integrated circuits at their respective, desired fixed or time-varying voltage levels [2]. Every electronic system is designed to operate at some nominal supply voltage. The role of the regulator in these systems is to provide this constant voltage, control power fluctuations, and prevent damage to loads connected to the supply. The selection of the IC voltage regulator depends upon system requirements for maximum load current, output voltage tolerance, quiescent current, type of input voltage source, and any special communication features such as an I²C interface. Voltage regulators are usually off-chip devices, however, they tend to occupy large PCB area and provide slow response to changes in load current. Recently, their on-chip implementation has been proposed.

Although there are a variety of voltage regulator topologies to choose from, the most commonly used for on-chip implementation are linear and switching regulators. Linear regulators offer good response to load current transients, ease of on-chip integration, they have relatively small size, and they are less expensive [2]. Linear regulator designs provide a clean output with very little noise, therefore they are more suitable to use in designs that require low output noise and fast input-output reaction, since they provide good response to changes in load current. Drawback of linear regulators is their efficiency degradation with the $V_{\text{OUT}}/V_{\text{IN}}$ ratio, as well as their inability to step up voltage.

On the other hand, switching regulators offer higher power conversion efficiency due to their low-loss external inductor and increased design flexibility. The inductor allows the regulator to transfer energy from input to output with no loss and it filters the output from switching signals. Furthermore, switching regulators generate multiple output voltages from a
single input voltage and operate as a switch where its duty cycle determines how much charge is transferred to the load [1]. Different than linear regulators, some types of switching regulators, such as boost regulators, can provide outputs that are higher than the input. Conventional switching regulators operate at relatively low switching frequencies and utilize bulky filter components such as inductors and capacitors [7, 8]. Hence, voltage regulator modules typically are separate, board-level components, with slow voltage adjustment capabilities [2].

With the growing push towards total chip integration, in recent years, there has been a surge of interest to build on-chip integrated switching voltage regulators [9, 10]. These regulators, operating with high switching frequencies, can obviate large valued inductors and capacitors, allow the filter capacitor to be integrated entirely on-chip, place smaller inductors on the package, and enable fast voltage transitions at nanosecond timescales [2]. There is a direct tradeoff between the switching frequencies of the voltage regulator and their power conversion efficiency [2]. Despite the benefits offered by on-chip integration, there are also design challenges that should be considered when placing voltage regulators on the same chip as the load.

3.2 **Buck-Type Switching Regulator for On-Chip Implementation**

Since most of the circuit supply voltages are lower than the voltage of the primary source to the board, such as the battery, switching regulators are used to step down the voltage [5]. Therefore, the most commonly used switching converter is the buck converter, shown in Figure 3-2. This converter topology uses an inverter that switches on and off and alternately connects and disconnects the input voltage to the external inductor, which is connected to the output terminal and its current is equal to the output current.
Figure 3-2. Switching Regulator with hysteresis control

For better and faster on-chip regulator designs hysteretic control is used since hysteresis provides the fastest transient response among all control schemes, reduces voltage fluctuation during load current transients, and the size of passive elements to allow on-chip integration of the regulator [1]. The circuit in Figure 3-2 consists of an inverter that switches on and off and produces the square waveform, an output filter inductor and capacitor, as well as the feedback network. The output of the low-pass filter, V_{OUT}, is the output voltage of the regulator that powers the microprocessor load [1, 2]. The filter attenuates the high frequency square wave and therefore V_{OUT} experiences ripple. The shape and amplitude of the output ripple current is determined by the size of the inductor.

When the switch is in the on position, the input voltage is connected to the inductor, which causes a voltage difference to appear across the inductor, and thus an increase in the current through it [4]. This current will flow through the inductor and charge the capacitor. Alternatively, when the switch is in the off position, the input voltage applied to the inductor is removed. However, since the inductor current does not change instantly, the voltage across it will adjust to hold the current constant. The decreasing current causes the input end of the
inductor to have a negative voltage. This turns on the diode, and the inductor current flows through the load and back through the diode. During the off state, the capacitor discharges into the load and contributes to the total current being supplied to the load. The switch in inductor voltage causes the current to ramp up and down as shown in Figure 3-3.

![Figure 3-3. Inductor Current in Switching Converter](image)

Feeding V_{OUT} to the control circuit, which then suitably sets the duty cycle of the square wave, closes the feedback loop. The hysteretic comparator, which in this case is a Schmitt trigger, has a high threshold, V_{high}, and a low threshold voltage, V_{low}. The PMOS transistor is turned on when the regulated output voltage is lower than V_{low}, and NMOS is turned on when the regulated output voltage is higher than V_{high}. Since V_{out} is directly sensed, when V_{OUT} fluctuates in response to sudden load transients, hysteretic control can react very quickly [2]. This single-phase buck converter can be incorporated to form a multi-phase converter.

Multiphase converters have been proposed for high load current applications [12], since they can reduce the peak current in each inductor to avoid core saturation [2]. Multi-phase on-chip power regulators provide small output capacitance and fast transient response. Increasing the number of phases improves transient response, which can be attributed to an increase in the
effective switching frequency with more phases [1, 2]. However, large number of phases results in large chip area, which is a major overhead introduced by this technique.

3.3 Implementation Challenges

Motivation for on-chip integration of voltage regulators is guided by increasing demand for high-performance processor designs with improved power delivery networks. In addition, on-chip integration saves PCB area and cost. When the regulator is placed close to the load, it responds quicker to changes in load current thus resulting in fast voltage switching and also low power microprocessor designs. However, there are many overheads associated with on-chip integration and they need to be addressed. Since the regulator is moved on-chip the sizes of its filter components are reduced. Smaller filter components result in higher switching frequencies, which make the regulator less efficient. Also, a smaller capacitor size results in less charge stored, which means less charge available to the load, which then introduces higher vulnerability to large di/dt events that can cause large voltage fluctuations [1].

In order to reduce fluctuations, decoupling capacitors are used but with the overhead of increasing chip area. A solution to this problem would be that the on-chip regulator uses the filter capacitor for both decoupling and filtering. However, since the on-chip capacitor is much smaller than the total decoupling and filter capacitance used for off-chip regulators, large load current steps can rapidly drain out the limited charge stored on the capacitor before the regulator loop can respond, resulting in a large voltage droop [2].

Circuit droops are assisted by filter component size reduction. In addition to the aforementioned overheads, inductance issues are a major concern as well. Each generation of processors demands faster transient response times, which requires the ability to change the
current through the inductor quickly. The magnetic field within an inductor resists change as in (3-1). Since the regulator provides constant output voltage, the only way to increase \(\frac{di}{dt} \) is to reduce the inductance value. A decrease in inductance size results not only in faster switching and higher inductor ripple current, but in a more noticeable parasitic inductance in the circuit as well.

\[
\frac{di}{dt} = \frac{V_{OUT}}{L} \tag{3-1}
\]

Although it remains a challenge to fabricate an on-chip inductor, it can still be realized in today’s integrated circuit technology, but the low inductance values of on-chip inductors are only suitable for RF applications [6]. Due to these limitations it becomes necessary to avoid inductance when dealing with on-chip regulators. Potential candidates to replace an inductor are gyrators, which consist of a capacitor, resistors, and transistors. An inductor realized with a gyrator improves the quality of filter networks. Gyrator application reduces the size and cost of a system by removing the need for bulky, heavy and expensive inductors.

Other inductorless methods include, conventional linear regulators, which suffer from low efficiency, MEMS integrated inductors, which lack process compatibility with current prevailing fabrication processes and high cost, and finally charge pumps, which suffer from pulsating currents that eventually cause poor output voltage regulation. Therefore, the gyrator replacement of inductor looks the most attractive technique. In this chapter we focus in reducing the voltage droop in the circuit. Methods for replacing the inductor will be presented in our future work.
3.4 **Hot Swap Controller Solution**

When the voltage regulator is implemented on-chip, the sizes of filter elements are reduced due to high switching frequencies. As a result, the circuit becomes more vulnerable to voltage droops and current surges. A smaller capacitor stores less charge and if the load is experiencing a large current step it will quickly drain this small amount of charge stored, thus resulting in output voltage droop. Also, switching power supplies experience inrush currents at turn on due to switching elements, which is undesirable for the load. In order to eliminate these effects a hot swap controller is proposed. Our simulations are performed with the controller and regulator placed off-chip and located between the source and the load, as shown in Figure 3-4.

![Figure 3-4. Regulator off-chip a) without controller and b) with controller](image)

The results show that this technique is effective in protecting the load from the droop and is a good candidate for on-chip implementation. The controller limits the inrush current by slowly decreasing the on-resistance of the N-Channel MOSFET. It also provides protection against high voltage transients and over- and under-voltage defects, load glitches, and short circuit [35, 47]. When the circuit starts powering up, circuit components have an immediate need to extract a large transient current from the voltage source. The controller monitors this inrush
current and slowly enhances the MOSFET and allows the voltage at the MOSFET's drain to rise from zero volts. Sensing the current across the resistor and controlling the gate accordingly can control the current. Once the controller makes sure the power is good and the output has reached its specified range, it delivers it to the load. Thus the controller limits the inrush current and protects the load from droops.

![Figure 3-5. Regulator and controller on-chip](image)

When dealing with single or dual core systems it is possible to integrate the controller on the same chip as the load since it only consists of transistors and logic circuitry, and we won’t have to sacrifice that much area. However, we have to reconsider using switching regulators and controllers, when we are dealing with complex multi-core and system-on-a-chip, since there are additional design challenges to take into consideration. If the regulator is integrated on the same chip as the microprocessor load, it will provide clean input to the core(s) and protect them from droops and current surges. The selection of the MOSFET transistor depends upon system requirements for maximum load current, output voltage tolerance, and type of voltage source.
Figure 3-6. Inrush current effects in the supply and load

Figure 3-7. Inrush current protection
During turn on the circuit extracts a large amount of current from the supply resulting in a
droop as shown in Figure 3-6 and Figure 3-7, and in a current spike in the load. When current
consumption increases voltage variations become large. The controller makes sure the load does
not see these variations by slowly disabling the processor circuit blocks. So, the hot swap
controller can be used when sudden variations of current occur. However, even though this is a
good technique to monitor and control droops and current spikes in the circuit and protect the
cores from being damaged, it introduces various overheads. The controller implementation on
the same chip as the microprocessor will result in an increase in the overall chip area and
introduce extra power dissipation in the system. In our future work we will focus in finding an
efficient technique that can replace the inductor in the circuit and result in a more efficient
regulator.
Technology evolution [37] has resulted in system-on-a-chip, which is a promising solution for integrating heterogeneous components such as digital signal processor (DSP) chips, memory cores, sensors, encoder blocks, micro-electro-mechanical systems (MEMS), and optoelectronic devices. Figure 4-1 shows a system-on-a-chip, which includes flash memory, SDRAM memory, GPS block, I²C interface, and various other function blocks.

Figure 4-1. STA2052, System-on-chip, from Nikkei Electronics Asia
As Figure 4-1 reveals, SOC design includes highly integrated mixed-signal integrated circuits, which are popular due to their low-cost, low power, and low-area [18]. Since analog and digital parts are integrated on the same chip along with a large number of cores, there will be issues related to management of power consumption and temperature, both of which directly affect the SOC reliability [19]. Due to the increase in circuit density, analog and digital parts are in close proximity, which causes signal noise. Therefore, voltage regulator becomes a crucial component of the power management system. Voltage regulators provide constant voltage and filter fluctuations that are generated from the power supply, thus protecting the load from seeing the ripple that comes from the input.

The regulator needs to be designed according to function block specifications and provide good efficiency and transient response characteristics. The voltage regulator typically resides between the source and each load. Since an SOC includes the integration of various function blocks, multiple voltage domains are needed. Multiple supply voltages provide an effective technique for power optimization [24], which results in better performance, low power dissipation, and evenly distributed heat dissipation. This strategy has also the advantage of allowing modules along the critical paths to operate with the highest available voltage level, while permitting modules along non-critical paths to use a lower voltage [26], thus decreasing energy consumption.
4.1 **Hybrid Two-Stage Regulator**

Users of portable electronic devices and embedded systems have placed increasing demands on the industry to create devices with high performance that have the ability to handle more complex tasks. In addition to higher computational capabilities, low-power operation is equally, if not more important [1]. The solution of [17] includes a combination of a variety of voltage regulators such as switching, linear, and switched capacitor regulators, not only for power management but for system protection against power analysis attacks as well. However, the design of such devices is not an easy task to accomplish and it occupies significant area. Aggressive power management is required and especially an efficient voltage regulator that not only provides well-regulated voltage to the system but also keeps its cost low. Since the regulator resides between the source and the load it provides power to, its design experiences challenges coming from both the input side and the load side. The challenge coming from the input side includes an input voltage that is higher than the operating voltage of the chip and the challenge coming from the load side includes severe transient.

![Figure 4-2. Two-stage conversion](image)

49
Furthermore, since the load is a system-on-a-chip employing many functional blocks it is very difficult for the single-stage converter to handle challenges from both sides. In other words, we need a two-stage conversion where the first stage steps down the voltage from the power supply and the second stage steps it down to bring it close to the level required by the load. If both of these regulator stages are placed off-chip it would not improve the transient response due to interconnect parasitic components that would still fall between the regulator and the load. On the other hand, due to their large size, complexity, and cost it is not practical to place switching regulators on the same chip as the load. Therefore, the first stage, a switching regulator, will be placed off-chip and the second stage, a tree design of low dropout linear regulators, will be placed on the same chip as the load. This improves the transient response of the regulator and it also reduces the noise produced by the switching regulator.

Buck-type switching regulator is used as first stage since it is needed to step down the battery voltage to a lower level as required by the SOC. In addition, the efficiency of switching regulators is generally higher than efficiency of linear regulators due to the presence of the inductor as low loss device. In this design a high efficiency first stage is needed since it will provide power to the second stage therefore the switching regulator is placed off-chip. The buck converter generates the 1.8V bus at a higher efficiency than the LDO. Low dropout linear regulators are used as the second stage and placed on-chip due to their small size, low cost, simplicity, and the ability to reduce fluctuations coming from the power source. The switching regulator - LDO solution uses a buck converter to generate the 1.8V rail, and an LDO powered from 1.8V to generate the 1.5V output. Then the 1.5V output will feed a DRAM chip and it will also serve as input to second LDO. Second LDO will step down the voltage to 1.2V to feed a DSP chip as specified in [34]. This 1.2V output will serve as input to third LDO, which will step
down the voltage to 1.0V and feed a sensor. This solution is a good overall compromise between size, cost, heat dissipation, and efficiency.

4.2 Stage 1: Switching Regulator

The first stage of this approach employs a switching regulator to step down the battery voltage and serve as power source for the second stage.

The switching regulator, shown in Figure 4-3, uses a PMOS transistor as a switch that connects and disconnects the input voltage to the external inductor, which is connected to the output terminal. Inductor current is equal to the output current. When the switch is in the ON position, shown in Figure 4-4, the input voltage is connected to the inductor, which causes a voltage difference to appear across the inductor, and thus an increase in the current through it [4]. This current will flow through the inductor and charge the capacitor.

Alternatively, when the switch is in the OFF position, Figure 4-5, the input voltage applied to the inductor is removed. However, since the inductor current does not change instantly, the voltage across it will adjust to hold the current constant. The decreasing current causes the input end of the inductor to have a negative voltage. This turns on the diode, and the...
inductor current flows through the load and back through the diode. During the OFF state, the capacitor discharges into the load and contributes to the total current being supplied to the load. The output of the LC low-pass filter, V_{OUT}, is the output voltage of the regulator that powers the load. The filter attenuates the high frequency square wave and therefore V_{OUT} experiences ripple [1, 2]. The intrinsic switched nature of these regulators not only produces ripples but also an increment of electromagnetic interference in neighboring electronic systems [22]. Figure 4-4 and Figure 4-5 show current flow in the switching regulator when the switch is closed and when it is open.

![Figure 4-4. Switching regulator with switch ON](image)

![Figure 4-5. Switching regulator with switch OFF](image)

Current and voltage waveforms during switching are shown in figures below.
Figure 4-6. PWM, duty cycle of the switching regulator

Figure 4-7. Voltage drain-source, V_{DS}, waveform

Figure 4-8. Waveform of current through PMOS transistor

Figure 4-9. Waveform of current through diode
The rectifier used for the design of the switching regulator is a Schottky diode because it provides low forward voltage and good reverse recovery characteristics. The output capacitor is used in order to provide significant filtering of the switching ripple. The selected capacitor is large enough so that its impedance is much smaller than the load at the switching frequency, allowing most of the ripple current to flow through the capacitor and not the load. The ripple current flowing through the output capacitor is equal to the inductor current waveform.

Table 1. Switching Regulator Circuit Parameters

<table>
<thead>
<tr>
<th>Regulator Circuit Parameter</th>
<th>Formula</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage</td>
<td>V_{OUT}</td>
<td>1.8V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>V_{IN}</td>
<td>3.7V</td>
</tr>
<tr>
<td>Maximum output current</td>
<td>I_{OUT}</td>
<td>260mA</td>
</tr>
<tr>
<td>Minimum output current</td>
<td>$I_{OUT} \times 0.1$</td>
<td>26mA</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>f_s</td>
<td>250kHz</td>
</tr>
<tr>
<td>Output power</td>
<td>$P_{OUT} = I_{OUT} \times V_{OUT}$</td>
<td>0.468W</td>
</tr>
<tr>
<td>Diode forward voltage drop</td>
<td>$0.25V$</td>
<td>0.25V</td>
</tr>
<tr>
<td>RDSon of switch</td>
<td>R_{DSon}</td>
<td>0.004-Ohm</td>
</tr>
<tr>
<td>Voltage drop across RDSon</td>
<td>$R_{DSon} \times I_{OUT}$</td>
<td>.00104V</td>
</tr>
<tr>
<td>Conduction loss of switch</td>
<td>$R_{DSon} \times I_{rms}^2$</td>
<td>1.352*10^-4</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>$ton/T = V_{OUT}/V_{IN}$</td>
<td>0.486</td>
</tr>
<tr>
<td>Switching period</td>
<td>T</td>
<td>4 us</td>
</tr>
<tr>
<td>On-time of the switch</td>
<td>t_{on}</td>
<td>1.945us</td>
</tr>
<tr>
<td>Inductor value</td>
<td>$((V_{IN}-V_{OUT}-V_{DSon}) \times t_{on})/(2 \times I_{min})$</td>
<td>99.24uH</td>
</tr>
<tr>
<td>Inductor stored energy</td>
<td>$L \times ((I_{OUT} + I_{min})^2/2)$</td>
<td>4uJ</td>
</tr>
<tr>
<td>Peak-to-peak ripple current</td>
<td>$I_{min} \times 2$</td>
<td>52mA</td>
</tr>
<tr>
<td>Peak switch current</td>
<td>$I_{OUT} + I_{min}$</td>
<td>286mA</td>
</tr>
<tr>
<td>Output capacitor</td>
<td>$(I_{ripple} \times T)/(8 \times V_{ripple})$</td>
<td>1.17uF</td>
</tr>
</tbody>
</table>
4.2.1 Pulse Width Modulation (PWM)

The duty cycle of the switching regulator is modulated by pulse width modulation in order to control the amount of power sent to the load. It measures the output voltage and when it is lower than the desired voltage of 3.7V it turns on the switch. When output voltage increases above 3.7V, PWM turns off the switch. The desired output voltage is realized by switching voltage to the load with the appropriate duty cycle. Since V_{IN} is 3.7V and V_{OUT} is 1.8V then duty cycle is $1.8V/3.7V=0.486$. The step-down occurring is relatively small, from 3.7V to 1.8V, therefore the operating duty cycle of the regulator is sufficient to maintain high regulator efficiency. On the other hand, if the step-down was bigger, such as from 10V to 1.8V, then duty cycle would be $1.8V/10V=.180$, which is very small and makes it difficult to design a voltage regulator with high efficiency. In addition, duty cycle is also dependent on t_{on}, which is 1.94us, and period, T, which is 4us. So, efficiency of the regulator varies with duty cycle. An extreme duty cycle challenges the design of an efficient regulator.

4.2.2 Switching Regulator Efficiency

Efficiency is one of the most important features of the switching regulator. The first stage of the design needs to be very efficient since it will step down the battery voltage and also serve as source for the on-chip LDO branches. The switching regulator provides high efficiency, given by (4-1), because it employs an inductor that transfers energy from input to output in a lossless manner.

$$\eta = \frac{P_{LOAD}}{P_{TOTAL}} = \frac{V_{OUT} \cdot I_{LOAD}}{V_{IN} \cdot I_{IN (AVE)}} \quad (4-1)$$
Furthermore, the switch mode transistor in the circuit also provides minimum loss since ideally its power dissipation is zero. When the switch is closed there will be zero voltage and therefore zero power dissipation and when the switch is open there will be zero current and zero power dissipation. The efficiency of the switching regulator depends on the size of its filter components, inductor and capacitor. The size of the inductor determines the shape of the output ripple current and voltage.

As seen in equation (4-2), mathematically, in order to reduce output ripple current and voltage, the size of the inductor has to be large, and this is one of the reasons why the switching regulators are not a good choice for SOC solutions. The large size of the inductor prohibits its SOC implementation.

\[
\Delta I_L = \frac{V_{IN} - V_{OUT}}{L} \cdot t_{on}
\]

Figure 4-11, shows the impact that inductor sizing has on output voltage ripple.

![Figure 4-11. Voltage ripple dependency on inductor size](image-url)
As the size of the inductor decreases the magnitude of output voltage ripple increases and it affects the operation of the circuit the regulator is supplying. Figure 4-12 shows the regulator efficiency for different loads. Maximum efficiency is achieved at full load.

![Efficiency Graph](image)

Figure 4-12. Switching regulator efficiency

4.3 **Stage-2: Low Dropout Linear Regulator (LDO)**

The second stage of this approach is a tree orientation of low dropout linear regulators, which are widely used in portable electronic systems [40]. LDO, Figure 4-13, is the best solution for this stage since it provides low noise, fast transient response, low component count, and ease of on-chip implementation, which are the main requirements for noisy environments such as system-on-chip. Efficiency of these regulators is sensitive to the $V_{\text{OUT}}/V_{\text{IN}}$ ratio; therefore we designed the second stage circuitry in the form of a descending tree to assure minimum dropout
across the regulator, as shown in Figure 4-2. When the dropout is small the regulator can be used with reasonable conversion efficiency [20]. In this stage, minimum dropout is not only important to achieve good conversion efficiency but also to minimize heat dissipation. If a system is prone to heat dissipation, additional cooling systems will be required, which increases system cost. Due to their small size, the LDOs allow us to create multiple supply voltages, which also assist in an even distribution of heat across the chip. The LDO requires only an input and output capacitor. This solution is the most economical.

![Figure 4-13. Linear dropout regulator](image)

4.3.1 Pass Element

Out of various pass elements that could be selected such as BJT or n-channel MOSFET (NMOS), the p-channel MOSFET (PMOS) was selected due to its low drain-source resistance, its ability to provide low dropout voltage, and its gate driving requirements. N-channel devices are usually used in designs where low dropout is not the primary concern. If the NMOS acts as
source follower, it will conduct the ripple from the gate to the output, and to keep the ripple low we need to design a good error amplifier. On the other hand, the PMOS element that we have selected acts like an adjustable resistor that allows high current flow when the gate becomes more negative than the source and thus the drain-source resistance (R_{DS-on}) becomes small. Smaller the resistance, more current flows and therefore higher current efficiency is achieved. Low power loss across the device is also obtained due to the PMOS low forward drop.

Pass element operates in the linear region in order to drop the input voltage to the desired output voltage [45]. In the linear region, the transistor is turned ON and is able to conduct current through the channel that has been created. Therefore, current flows from drain to source. The conditions that need to be satisfied for the pass element to operate in the linear region are given by (4-3) and (4-4).

\[V_{GS} > V_{TH} \quad (4-3) \]
\[V_{DS} < (V_{GS} - V_{TH}) \quad (4-4) \]

Here, V_{GS} is the gate-source voltage, V_{DS} is the drain-source voltage, and V_{TH} is threshold voltage. The MOSFET operates like a resistor, controlled by the gate voltage relative to both the source and drain voltages. Equivalent resistance of the transistor can be found since we know the input voltage, output voltage, and load current. So, it is perfectly correct to remove the transistor and replace it with its equivalent resistance, with the only drawback being lack of control. While we can control and adjust the gate of the transistor according to circuit specifications, it is impossible to do so with the resistor. Therefore, we conclude that the pass device is the most
imperative and practical solution. In order to calculate the equivalent resistances of our three pass devices, we use equation (4-5).

\[R_{eq} = \frac{(V_{IN} - V_{OUT})}{I_{LOAD}} \] \hspace{1cm} (4-5)

Using (4-5), for Branch-1, VIN is 1.8V, VOUT is 1.5V, and ILOAD is 30mA, and as a result equivalent resistance is 1-Ohm. For Branch-2, VIN is 1.5V, VOUT is 1.2V, and ILOAD is 70mA, and as a result equivalent resistance is 0.4-Ohm. Finally, for Branch-3, VIN is 1.2V, VOUT is 1.0V, and ILOAD is 4mA, and as a result equivalent resistance is 5-Ohm. The current-voltage characteristics of the pass element are shown in Figure 4-14.

![Figure 4-14. Current-Voltage characteristics [51]](image-url)
The drain to source voltage of the pass element is 1.5V with 30mA current, represented by point A in Figure 4-14. At this operating point, point A, the voltage from gate to source will be selected as 2.5V in order to maintain regulation. However, if a change occurs in the output voltage, the LDO must react quickly in order to keep low dropout and low power dissipation. If the load consumes more current, say 70mA, then the gate to source voltage will be increased by the error amplifier to maintain regulation. This is represented by point B. So, a change in current will result in a change in gate to source voltage but a change in drain to source voltage only shifts the point accordingly as point C in the graph. However, from this point any further change in voltage or current will bring the operating point in the saturation line. The saturation line is the minimum MOSFET drain to source resistance ($R_{DS\text{-on}}$) [52]. If the LDO operates at point D, which is outside of the operating region, the LDO cannot reduce the drain to source voltage and the output voltage falls out of regulation and transistor operates along the saturation line.

4.3.2 Error Amplifier

The error amplifier is a very important part of the LDO design. It senses changes in output voltage and if V_{OUT} changes relative to V_{ref}, which means if it exceeds regulation level, the error amplifier decreases the differential voltage between gate-source allowing less current to flow through PMOS thus decreasing V_{OUT}. On the other hand, if V_{OUT} decreases, the error amplifier increases the differential voltage between gate-source allowing more current to flow through PMOS thus increasing V_{OUT}. The error amplifier used in this design is from Linear Technology, LTC1469. The CMOS configuration of a Class-A error amplifier [41] is shown in Figure 4-15. This type of amplifier is preferred in this LDO design since the low dropout characteristics demand a PMOS output stage such as the one in the Class-A amplifier.
Figure 4-15. Class-A amplifier

Resistors R1 and R2 are bias resistors that form a voltage divider feedback network. In order to get low quiescent current (ground current) consumption the values of these resistors need to be large. Output capacitor value in the pico-range is selected such that it complies with fabrication requirements.

4.3.3 Power Supply Ripple Rejection

Power supply ripple rejection (PSRR) is an important feature of the low dropout linear regulator. It is the ability to prevent fluctuations at the output voltage caused by variations in the input voltage [52]. It compares input and output ripple over a wide frequency range such as from 10Hz to 10MHz and it is measured in decibels (dB). [45] states that the specific formula to find the PSRR for an LDO is given by:
Here, \(A_V \) is the feedback open-loop gain, and \(A_{VO} \) is the gain from \(V_{IN} \) to \(V_{OUT} \) with the feedback gain. In order to get high PSRR, \(A_V \) should be increased and \(A_{VO} \) should be decreased. Power supply ripple rejection at 250 kHz frequency is measured by modulating the input voltage and measuring the change on the output.

4.3.4 Efficiency of Low Dropout Linear Regulator

Current efficiency and regulator efficiency are crucial in any regulator design, especially when designing linear regulator since their efficiency is dependent on \(V_{OUT}/V_{IN} \) ratio. Current efficiency is especially important since it directly affects battery life. When the circuit is operating at full load conditions, load current is much higher than quiescent current, however, when the circuit is operating at low load conditions, quiescent current plays a dominant role. Efficiency of the low dropout regulator is given by equation (4-7) and current efficiency is given by equation (4-8).

\[
\eta = \frac{V_{OUT} \cdot I_{OUT}}{(I_{OUT} + I_{qesc}) \cdot V_{IN}} \tag{4-7}
\]

\[
\eta_{current} = \frac{I_{OUT}}{(I_{OUT} + I_{qesc})} \tag{4-8}
\]

Corresponding efficiencies were calculated using equations (4-7) and (4-8).
Table 2. LDO regulator efficiency

<table>
<thead>
<tr>
<th>Block</th>
<th>V\text{IN}</th>
<th>V\text{OUT}</th>
<th>I\text{OUT}</th>
<th>I_{\text{quiescent}}</th>
<th>\eta</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>1.8V</td>
<td>1.5V</td>
<td>30mA</td>
<td>42uA</td>
<td>83%</td>
</tr>
<tr>
<td>DSP</td>
<td>1.5V</td>
<td>1.2V</td>
<td>70mA</td>
<td>35uA</td>
<td>80%</td>
</tr>
<tr>
<td>Sensor</td>
<td>1.2V</td>
<td>1.0V</td>
<td>4mA</td>
<td>31uA</td>
<td>82%</td>
</tr>
</tbody>
</table>

As seen from the results in Table 2, efficiency of the on-chip low dropout regulators is above 80%, which is good considering other benefits provided by the LDO such as low cost, small area, and simplicity of the design.

4.4 **Simulation Results and Analysis**

The two-stage design simulations are performed using SPICE simulation tool. First, stage-1 consisting of a switching regulator, Figure 4-16, is simulated and analyzed. The buck-type switching regulator steps down an input voltage of 3.7V to an output voltage of 1.8V.

![Figure 4-16. Stage-1, switching regulator](image)
Simulations were performed to verify minimal output voltage dependency on the load. Loads in the interval from no-load to a 10-Ohm load resistance were selected and the results are shown in Figure 4-17. In the figure, a 3.7V input is shown along with other voltage waveforms. When there is no load in circuit the output resembles the input with a very small ripple due to switching. Furthermore, examining the curves corresponding to various loads, their effect is shown on the output waveform. Higher load experiences more ripple. However, despite the ripple, the waveform stabilizes and approaches the desired output of 1.8V after about 1ms.

Figure 4-17. Switching regulator output waveforms
Transient response of a variable load, a varistor, is shown in Figure 4-18 and as expected after any load change output voltage experiences a small ripple then stabilizes to the desired value.

![Figure 4-18. Transient response](image)

After an efficient switching regulator first stage was designed, it was used as the source for the building block of the tree design, shown in Figure 4-19. The results of the building block consisting of the switching regulator source and the LDO second stage are shown in Figure 4-20. The simulations are performed for a DRAM load operating at 1.5V. Graphs in Figure 4-20 show the response of the quiescent current of the LDO as well as its input and output voltages to the load current change.
Figure 4-19. Switching-LDO building block

Figure 4-20. Switching-LDO building block waveforms
As the load current consumption increases about 30%, both voltages experience small ripple and settle to the same designed voltages. The size of the ripple has a direct relation with the time and value of the load current transient. When the transient has a bigger step such as at the input, the ripple is higher. However, when the step is relatively small such as the load transient increasing from 30-40mA, the ripple is lower.

Using the previous results of the main building block of the design, two more additional branches were added, as shown in Figure 4-21 followed by simulation results in Figure 4-22. Corresponding voltages and currents were measured.

![Figure 4-21. Switching-LDO tree design](image)
As seen in Figure 4-22, the highest ripple is experienced at the input of the first branch. Other branches inherit this as well, however, the LDO has the ability to reduce ripple and since these voltages go through multiple LDO branches the ripple effect is smaller.
Quiescent currents (ground currents) of all three LDO branches are shown in Figure 4-23. It is imperative that their values remain small for maximum efficiency. In order to maintain small quiescent current, a larger feedback resistor (R2=30K) was used.

The LDO branch response to changes in load current is shown in Figure 4-23. The DRAM is increasing current consumption from 30mA to 35mA after 1ms, the DSP is decreasing current consumption from 70mA to 65mA after 1.5ms, and the sensor is increasing current consumption to about 10mA at about 3.3ms. As seen in the graphs each change in load current causes changes in all the branches.
Figure 4-24. Switching-LDO tree design load transient waveform
For comparison and proof of concept, a two-stage regulator was designed with the same specifications, except this time the LDOs have the same 1.8V input source and are connected parallel, as shown in Figure 4-25.

![Switching-LDO tree design](image)

Figure 4-25. Switching-LDO tree design

Figure 4-26 shows the effect that a higher input voltage has on efficiency and performance of the LDOs. Since the dropout across the regulator is higher, the efficiency decreases and therefore there is more heat dissipation in the system. In addition, it is important to mention that all the output voltages experience more ripple than in the previous tree design, however they still stabilize to the desired output level.
Figure 4-26. Switching-LDO parallel design waveforms

Table 3. LDO regulator efficiency, parallel design

<table>
<thead>
<tr>
<th>Block</th>
<th>V\textsubscript{IN}</th>
<th>V\textsubscript{OUT}</th>
<th>I\textsubscript{OUT}</th>
<th>I\textsubscript{quiescent}</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM</td>
<td>1.8V</td>
<td>1.5V</td>
<td>30mA</td>
<td>49uA</td>
<td>83%</td>
</tr>
<tr>
<td>DSP</td>
<td>1.8V</td>
<td>1.2V</td>
<td>70mA</td>
<td>39uA</td>
<td>67%</td>
</tr>
<tr>
<td>Sensor</td>
<td>1.8V</td>
<td>1.0V</td>
<td>4mA</td>
<td>34uA</td>
<td>56%</td>
</tr>
</tbody>
</table>

Results in table 3, show that efficiency of the LDO degrades with the increase in dropout voltage. The more voltage is dropped across the regulator, the lower it efficiency becomes and there is more power dissipation in the system.
In the future we are planning to continue this research and acquire a better understanding of the hybrid structure. Future work includes optimization of the current two-stage approach, the design of a good and efficient control system that will monitor both stages at the same time and provide well-regulated voltage accordingly. Furthermore, this design will be optimized for high current applications such as future multi-core processors operating with very low voltages and very high currents in the range 50A-100A. This includes a current boosting technique that will be placed at the output stage of the LDOs and increase current according to the system specifications. The optimized design will be placed in a multi-core environment for power management and distribution as well as for improved thermal stability. Sections 5.1 and 5.2 cover the initial work that our group has done in this direction.

5.1 Power Management and Thermal Stability in Multi-Core Chips

Due to the dramatic increase of power consumption and temperature it is not possible to optimize the power profile and thermal stability just by attacking the problems from device, interconnect or circuit levels. Rather a complete system level approach is required. PIs and their groups plan to investigate the prospects of a self-sustainable thermal and power management system design as outlined in Figure 5-1. In this planned multi-core dynamic power and thermal management system we assume that all the state-of-the-art circuit and architecture level leakage and power reduction techniques would already be implemented in those cores and other circuit blocks. Still, it will be very crucial to monitor thermal stability of every component. One
sequence might cause one component to be used for long time. That might raise the temperature of that particular component higher than the threshold value, which could jeopardize its functionality. And failure of one component leads to the failure of the entire system. Therefore, a mechanism to ensure the thermal stability of every component by controlling power consumption in the system is essential. The developed voltage regulation scheme can play the central role in this scheme.

![Figure 5-1. Multi-core/multi-block Dynamic Power Management System](image)

CORE 1

In the conceptual scheme, there are four cores, which are powered by the single voltage regulated module (VRM). Four P-N junction sensors have been used to sense the temperature of the cores, and those temperature signals are transferred to the signal conditioning & ADC module, which will convert the signals into some values and will pass it to the logic circuits for comparison with the threshold values. If any of the values surpasses the threshold value, the
VRM will be notified and VRM/Frequency regulator will activate the power gating structures for that particular core. In this way, the entire system is going to be self-sustained without any external monitoring. Along with it, we can always implement all existing power management techniques like timeout. But as long as the proposed mechanism is there, a run-time control of thermal stability can be achieved. Figure 5-1 provides a conceptual overview of the proposed scheme. At this stage the focus is not to develop circuit techniques for implementing VRM for this self-sustained control. However, the initial goal is to synthesize the policy for such control, and identify relevant research needs so that long-term research projects can be undertaken for successful implementation of reconfigurable multi-core SOC thermal and power management.

5.2 Efficient Power Gating Techniques for Multi-Core Design

To implement the above power management and thermal stability scheme an efficient power gating is required to balance between the activities and power consumptions in various circuits or core clusters. In [30]-[32], our group proposed an innovative power gating technique that can be adopted in single-core and multi-core SOCs. The underlying concept of the proposed technique is illustrated in Figure 5-2.
In the proposed scheme an additional power gating path is provided in parallel to conventional sleep transistors used for power gating or clock transistors used in dynamic circuits. This parallel power gating path will contain single or multiple switching devices depending the expected leakage reduction and allowable reliability tolerance. The combination of sleep/clock transistors and accompanying parallel current paths will be placed in between real and virtual supply rails, while the logic or memory circuit/block/core will be placed in between virtual supply rails. The control of the operation of these parallel paths can be exactly similar to that of sleep/clock transistors, or the control can be incorporated with a dynamic run-time observation of certain metric of the circuits or systems. Here, we propose to control the operation of this power gating scheme based on the run-time estimation of spatial thermal profile of the circuits/blocks/cores under consideration. Whatever the control mechanism, the purpose of adding these additional power gating paths is to provide three modes – active (RUN), intermediate data-retention (HOLD) and cut-off.
While regular sleep/clock transistors are off various levels of leakage and ground bounce reduction can be achieved by shifting to HOLD or cut-off modes. In the RUN mode these parallel paths provide additional operating currents, thereby improving performance of the circuits or systems. The HOLD mode will act as data retention mode, thus eliminating the need for additional data recovery circuitry. Selection and arrangement of switching devices will ensure how much control on leakage and ground bounce can be achieved. In this HOLD mode the voltage across the virtual rails will be reduced by an amount equal to multiple threshold voltages of the switching devices used. Since, the effective voltage across the logic circuit is reduced the overall leakage current will be reduced in this mode. If a complete suppression of power consumption is necessary during long idle period a transition to cut-off mode can be made. During the return of the circuit from cut-off to RUN mode the HOLD mode can be employed as intermediate state to control ground bounce noise in power delivery system.

In our group’s recent publications, [30]-[32], two different implementations of the proposed concept are presented. In these implementation MOS transistors and MOS diodes are used as switching devices, which provide multiple-VTH reduction of effective voltage across the logic circuits/cores during the idle mode. Here, the number of series MOS diodes is a design variable to manage the leakage-recovery time tradeoff. However, a greater freedom would be highly desirable in setting the VVDD/VGND voltage. Indeed, a finer granularity would be useful - not only multiples of VTH (consider that 2VTH is almost VDD, in sub-100 nm technologies). Moreover, it would be useful to set VVDD/VGND independently of the variations in the switch transistors. This can be done by setting VVDD/VGND with an Op-Amp driving the gate or bulk voltage of the added power switches, according to a desired reference voltage VREF. In this way, we have two degrees of freedom when driving the power switch: this allows for also
reducing the switch leakage, once VVDD/VGND is assigned (for example, Reverse Body Biasing may be used to reduce the switch leakage during the intermediate standby, and Reverse Gate Biasing may be used to reduce the switch leakage in standby or normal operation). The above mechanisms are suitable for dynamic operation, changing VREF according to the instantaneous leakage-recovery tradeoff at the considered point of time.

Furthermore, our future work will include the design of an inductor-less switching regulator option that can be integrated on the same chip as the load without size, cost, and efficiency constraints. Inductors have always been a bottleneck in nano- and micro-electronic circuits due to their relatively large size, their tendency to pick up noise in the electromagnetic spectrum as well as difficulty to fabricate and interface with CMOS and BJT devices. In general, inductive effects are dampened by resistance but at high frequencies and wide and long lines inductance may cause delays, noise, and other signal integrity problems. Difficulty with on-chip inductance is also result of current return paths that are difficult to figure out and wires may influence each other even if they are not close.

We have done some initial work in designing inductor-less switching regulators and will continue our research further. For on-chip regulators, using inductor-less option does not help the case since there is still lack of efficiency and good regulation capacity. Therefore, instead we use simulated inductors to replace real inductors. Before replacing the inductor in a regulator circuit it is important to notice that the inductor is floating and not earthed. Therefore, it can be replaced by circuitry that simulates a floating inductor.

Through circuit techniques, an inductor may be simulated with a capacitor and linear active devices. However, the linear active devices will be very inefficient, making an inductor that is using a lot of power not necessarily as a parasitic resistance in the inductor, but still
wasting energy somewhere. Such circuits can be gyrators realized with resistors, capacitors, and active devices such as operational amplifiers. Therefore, gyror implementation with transconductors is preferred. Furthermore, gyrators consist of two voltage controlled current sources whereas operational amplifiers are voltage controlled voltage sources, so to make the implementation of the gyror simpler we use transconductors [4]. The input impedance of the gyror is inversely proportional to the output impedance and therefore it allows the conversion of a capacitor into an inductor.

Because a gyror is fundamentally a connection of an inverting and non-inverting voltage-controlled current source their implementation with transconductors is preferred over operational amplifiers [4]. In [7] the realization of an inductor with a transconductance gyror is briefly discussed. Therefore, we performed initial simulations to show that this technique is suitable for inductor replacement and that the gyror behaves similarly to the inductor. Figure 5-3 shows two gyrators back to back, one for each port that replace the inductor.

![Figure 5-3. Switching regulator operating with transconductance gyror](image)

The value of inductance depends on the capacitor connecting the two gyrators and on the value of tranconductance. This research work on on-chip power management and voltage regulation will be followed by many optimization and improvements for a wide application range including multi- and many-core systems.
6 CONCLUSION

In this dissertation we have presented analysis and design of a two-stage voltage regulator conversion that handles challenges coming from the input side and load side. The first stage steps down the voltage from the power supply and the second stage steps it down to bring it close to the level required by the load. This design deals with challenges faced by many circuit and device designers in this new nanometer era.

The proposed methodology includes the first stage consisting of a switching voltage regulator located off-chip and the second stage consisting of a tree low dropout linear regulator topology located on-chip. The tree orientation assures low dropout across the regulator and provides improved efficiency, fast transient response, and noise reduction. This technique proves to be efficient, simple, and less costly compared to other options that offer total on-chip integration of switching regulators. The proposed approach combines the advantages of both voltage regulator topologies, switching and linear, and results in one hybrid design that is suitable for multi-core SOC implementations and designs.

In addition, a hot swap controller is proposed, to limit undesirable inrush currents experienced by power supplies at turn on due to switching elements. The results show that this technique is effective in also protecting the load from voltage droops. The controller limits the inrush current by slowly decreasing the on-resistance of the N-Channel MOSFET. It also provides protection against high voltage transients and over- and under-voltage defects. When the circuit starts powering up, circuit components have an immediate need to extract a large transient current from the voltage source. The controller monitors this inrush current and slowly enhances the MOSFET and allows the voltage at the MOSFET's drain to rise from zero volts.
The current can be controlled by sensing the current across the resistor and controlling the gate accordingly. After detailed analysis and simulations it is concluded that the two-stage tree topology provides well-regulated voltage with high efficiency, higher than the conventional linear regulator counterparts.
REFERENCES

REFERENCES (continued)

REFERENCES (continued)
REFERENCES (continued)

